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ABSTRACT
Images of the real world are formed by visible light being scattered by surfaces and volumes.
The goal of global illumination methods is to simulate the path of light in an environment
through the image plane in order to compute realistic images. Not all applications require
the accuracy attainable with global illumination methods, and not all global illumination
methods are good for all possible lighting effects. In this course the audience will be given
a vocabulary and taxonomy for understanding global illumination. Insight into the basic
methods will be provided using comparison to physical experiments. The target audience
includes: people who are new to graphics who want to be generally informed, people who
teach graphics courses but specialize in some other area of graphics, and/or people who
think they may need global illumination for their application and want to understand how
these methods differ from other rendering techniques.
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A Basic Guide to
Global Illumination

Applications:
− Product appearance design
− Safety design
− Artistic effect acheived by
    physical means.

The purpose of this course is to give an overview of the area of  computer graphics that
has come to be known as "global illumination". The goal of global illumination is to make
images of scenes which are defined numerically (may not physically exist yet) The images are
predictive −− they are intended to show how the scene would appear if it were actually 
built. This is as opposed to artistic images or diagrams which may illustrate an 
individual’s  idea of what a scene would look like. Global illumination simulates
the physical phenomenon of light transport.

There are many reasons to make images. In many cases it is desirable to make 
"non−photorealistic" images that emulate artistic techniques such as sketching and
painting. Global illumination is used when accurate predictions are needed for applications
such as: what will the car look like in the showroom? Will the dashboard be visible
to a driver at night? Will this theatrical lighting setup achieved the desired 
dramatic effect for a performance?

Motivation
and Definitions
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light

object

image
planeviewer

real life wide
range of light
magnitude and 
spectrum

display has
more limited
range

We see things as a result of how they interact with visible light  To form
an image we select a view point, view direction, image plane and image
resolution. We color each pixel in the image according to what object
would  be visible through that pixel, and what quantity of light would be
leaving that object in the direction of the viewer.

The RGB (red,green,blue) values we ultimately choose will not produce
the same quantity of light on our display as we would encounter in real life.
Displays have limited color gamuts and dynamic ranges. Mappings are needed
to convert the quantity of light we predict to something displayable. These
mappings use models of the human visual system. So, unfortunately to completely
understand the formation of a realistic image, some knowledge of both
the physics of light and the psychophysics of humans is needed.
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Isn’t lighting built 
into graphics
hardware for
making shaded
images?

Fundamental Effects:

− Direct Illumination

− Shadows

− Interreflections

− Volumes

Systems such as Open GL and VRML have "lighting models" that are heuristics that
emulate some lighting effects to render objects with shape and texture. However, these
systems do not allow the definition of real light sources, physically realizable
reflectances, do not include the "inverse square law", often have no shadows (or
just sharp ones) and do not account for interreflections

Let’s examine the fundamental effects that are achieved with global illumination that are not
achieved by heuristic graphics lighting. Not all of these effects are equally important in
every application, and they are certainly not all equally easy to compute. Sometimes
they can be approximated by simple methods, but in some cases extensive calculations
are required to get an adequate image. It is important to understand the effects critical to an 
application to determine the most cost effective approach to computing an accurate image.
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Direct Illumination

Shadows

"Direct Illumination" refers to light that arrives at an object directly from the light source
and then is reflected to the viewer. To accurately compute direct illumination, appropriate
definitions of the geometry, directional, and spectral composition of the light source and
the reflectance function of the object are needed. Modeling light sources and
reflectances is sometimes referred to as "local illumination."  See the section "Global
 Illumination  Input" for more details.

It is also important to find where light from the source does not reach an object.
Shadows are an important cue to object locations −− we have the sense that the
pear is floating above the plane becase of the location of the black ellipse
used to represent its shadow.
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Interreflections

The shadow area where no light reaches is the umbra. There are some points where
parts of the light source only are seen. called penumbra, which make the edges of
the shadow look fuzzy. Whether the shadow is fuzzy or not depends on the sizes
of the source and occlusion  relative to the distances to the source and occlusion.

Many algorithms  treat just the problem of how to compute shadows.. Classic
techniques are  Crow’s  shadow volumes (Crow82) and  Williams’  shadow
maps (Williams78).

Interreflections are the "global" part of  global illumination. The light that ultimately
reaches the eye and has an effect on the image often goes through more than one bounce.
Interreflections are expensive to compute −− in some scenes where they are not
important  it may be possible to neglect them or approximate crudely with
simple calculations.
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Types of Reflectance

diffuse specular general

Interreflections: Diffuse
  Indirect Illumination

The effect of interreflections depends on the directional properties of the 
surfaces  involved. Diffuse (a.k.a. Lambertian, matte) surfaces are characterised
by the fact that you can’t make out any objects  reflected in the surface. Specular
(a.k.a mirror−like) surfaces are characterized by the fact that you can see reflected
objects clearly −− i.e. that’s why we use them for mirrors ; ) Many surfaces
are neither of the idealized cases −− and reflections of objects may be seen
dimly or fuzzed−out in a general surface

Indirect illumination, generally reflection off diffuse surfaces may cause
surfaces which have no direct view of the light source to be illuminated.
This  is  dramatic when there are many surfaces in the scene with no
direct view of the source, as in these examples. However these interreflections
are expensive to compute, and if most surfaces have a view of a light source,
the effect of interreflections might be adequately approximated by
a constant value. Good early examples of the effect of indirection illumination
are shown in Nishita and Nakamae’s 1985 SIGGRAPH paper
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Interreflections: Diffuse
  Color Bleeding

Interreflections: Caustics
Bright Spots

The color of objects depends on their spectral reflectance, and the spectrum
of incident light. (This is made a little more comples by the "color constancy"
human vision phenomenon −− see "From Solution to Image" in the appendix).
If a white wall, for example, is  illuminated by indirect illumination from a
red wall, the white wall will look somewhat red. This  is generally a subtle
effect, and was  illustrated  by the "Cornell Box" (Goral84) shown above in a 
early incarnation. 

In graphics, "caustics" refer to bright spots that are the result of a  path of reflection
or multiple reflections, from the light source, by several specular surfaces, and
then finally hitting a diffuse surface.  An extreme example is shown here where
a spot light on the ceiling at the right is aimed at a mirror which reflects
light through a crystal ball which focusses light into a bright spot to the left of
the ball on the floor. This is in addition to the bright spot that results from the
crystal ball focussing the main ceiling light onto the floor. Combining different
paths of interreflection was discussed in Chen et al ’91, in which this image appears
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Fundamental Effects:
Volumes

Definitions: 
RADIANCE

energy

time*projected−area*solid−angle

L

 Besides surfaces, volumes of media can interact with light. Most of the time the
volumetric medium in our environment  (air) does not "participate" in the radiative transfer
of visible light. However if there are water droplets (fog or clouds) or particulates
(dust or smoke particles) in the air, these volumes of media partipate in the light transfer,
and are called "participating media". Details on input and descriptions of participating
media can be found in the appendix "Input for Participating Media."

To form and solve equations for global illumination, we need to get specific on how to
define a quantity of light.  The basic quantity we want to solve for is  radiance L The
spectral radiance  (i.e. radiance for various wavelengths of light) convolved with 
spectral functions related to the spectral sensitivities of the human visual system,
will ulitimate be what we use to set the value of each pixel in an image.
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Definitions: 
RADIANCE time and area

energy transport is continuous in 
time, and distributed over areas

Definitions: 
RADIANCE solid angle

dω

Why this definition? Energy is continually being transferred in our problem. 
In a still image the rate that visible light per unit time is constant, but it is
being transferred continually. A point has no dimension, so strictly speaking there
is zero energy leaving a point. We can discuss energy/time at a point though if
we express it as energy/(time*area).

The light leaving a point may be different in each direction. All of the directions around
a point are included in a hemisphere over the point. The hemisphere is said to
subtend 2π steradians over the surface, analogous to a half circle subtending
π radians. 
A solid angle is a chunk of that hemisphere of directions. By integrating over all solid 
angles we can account for either all of the light leaving the surface per unit time and area,
 or all of the light energy incident.
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Definitions: 
RADIANCE

projected area

θ

Α

Acosθ

Reflectance: BRDF

Bidirectional
Reflectance
Distribution
Function general

Why projected area and not just area in the radiance definition? 
When the surface is viewed at an angle, its area is forshortened by
the cosine of the angle. By divided by projected area radiance
expresses the quantity of light  in terms of the effective surface area
in the given direction

NOTE: Radiance is defined with respect to a surface, but not necessary a physical
solid surface. Radiance is defined for any infinitesmal area  specified by a location
and surface normal, anywhere in space.

The other key definition is  to precisely define the function that describes what
happens to light when it is reflected from a surface.  A reflectance is the ratio
of reflected to incident light energy. A more general function expresses 
the directionaliuty of reflectance and is NOT a ratio that ranges
from 0 to 1,  but a distribution function that takes on any non−zero real
value.
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Reflectance: BRDF

fr (θi,φi,θr,φr)=   Lr(θr,φr)
                        ____________
                         Li(θi,φi)cosθidωi

radiance/ energy flux density

Special BRDF:

fr = ρd/π

DIFFUSE

fr=ρs δ(θm)/cosθ

SPECULAR

The BRDF relates the reflected radiance in a particular direction (indicated here
in spherical coordinates −− theta is the polar angle, phi is the azimuthal), to the
incident energy flux density. For a general surface fr has a non−zero value for
all pairs of incident and reflected directions.

The BRDF for the idealized surface reflectances have a simple form. A diffuse
surface has a BRDF that is the same for all incident and reflected directions. The
value ρd is the ratio of reflected to incident light energy. π is in the denominator for the
diffuse surface as a result of integrating all directions with a cosθ weighting factor.
A specular surface reflects light in only one direction for a given incident direction,
so its BRDF is a delta function
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 Lr(θr,φr) =

∫  fr (θi,φi,θr,φr)  Li(θi,φi)cosθidωi

Reflected
Radiance

The Rendering Equation

 Lo(θr,φr) =    Le(θr,φr)  +

∫  fr (θi,φi,θr,φr)  Li(θi,φi)cosθidωi

radiance from object radiance emitted from object

radiance reflected  from object

To compute the radiance reflected from a point on a surface, we need to account
for the fact that light may be incident from all directions, so we need to integrate
over the entire incident hemisphere.

An object may emit and/or reflect light. The complete rendering equation gives the radiance
leaving an object accounting for both effects. This is just the well known equation of radiative transfer
as used in heat transfer, illumination engineering, and various area of physics. The
seminal paper "The Rendering Equation" by Kajiya in 1986 pointed out that this is the
equation we want to solve to generate accurate images, and that in fact all of the approximations
that had been made in an attempt to make realistic images were in some way an
attempt to solve this equation.
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Ray Tracing

Ray Casting vs. Ray  Tracing

One of the basic classes of global illumination solutions 
is ray tracing. Ray tracing involves following paths or trees of line
segments through the scene to compute the effects of typical
light paths.

The terms "ray casting" and "ray tracing" are sometimes confused. Ray
casting refers to intersecting an individual ray with objects in the scene
to find the first visible surface. Ray tracing involves finding paths or
trees of line segments −− ray casting is a basic tool in finding these
paths.
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Ray Casting

Spatial 
organization
for culling

Ray Casting
Efficient
intersections
for 
NURBs
etc.

A couple of notes on ray casting are worthwhile since it is a fundamental operation
performed millions of times in a ray traced image. One area of research in ray
casting has been avoiding as many intersection tests as possible. A typical
approach is to sort surfaces into a spatial structure, such as an octree (Glassner84).
Intersection tests are only performed on surfaces in the cells  traversed
by the ray. In this two−d example, no tests are needed for the hollow circles −−
just for the two solid circles.

Another area of interest  in ray casting is efficiently intersecting a ray with a
particular surface.  Once it is known that a ray intersects a surface such as
a NURB (non−uniform rational B−spline), or a quadric surface (e.g.
ellipsoid) the intersection point should be computed with a minimal number of operations
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Ray Tracing
Classic "Whitted−style"

s

d

image plane

Ray Tracing
Classic 

Diffuse surfaces shaded by orientation to light.

Specular surfaces look like mirrors.

Constant  "ambient" added to avoid pure black.

The original ray tracing method involved tracing rays from the
eye, through the image plane and into the scene. When a diffuse
surface was hit by the ray, a ray was cast at the light source, and
if it was visible the point was lit proportional to the cosine of the
angle between the ray to the source and the surface normal. 
When a specular surface was hit, no light source test was made,
instead a new ray was cast in the direction of specular reflection.

Ray tracing was originally published by Whitted (Whitted81). Although
conceptually simple, it was a computationally expensive method at the
time, even for simple scenes. Despite its simplicity, the approach
captured the important features that help make a scene look real −−
particularly in scenes dominated by specular objects.
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Ray Tracing
Classic 

Lo(θo,φo) = ksLsp(θsp,φsp)+

kdcosθsoLe,so +kaLa

Ray Tracing
Classic 

d

shadows
produced
by testing
the path of the
ray to the
light source

This  is the equation that classic ray tracing is effectively solving.
The BRDF doesn’t appear −− just coefficients that are related
to reflectance −− ks and kd for specular and diffuse, and ka for
"ambient." La is an ambient radiance that accounts for the effect
of all interreflections, and is uniform throughout the scene. The
coefficient ka allows the user to modify the effect of La surface
by surface.

 Shadows are produced in ray tracing by testing the visibility
of the light source from a location on a diffuse surface.
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Ray Tracing
Classic 

PLUSES:
− shadows
− shiny objects
− arbitrary geometry types, 
   anything that you can 
   intersect with a ray

Ray Tracing
Classic 

MINUSES:
− no 1/r2 fall−off of light
− diffuse interreflections an 
    arbitrary constant
− sharp shadows, 
   sharp specular reflections
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Distribution Ray Tracing

INSIGHT: Generating a realistic
image requires integration
in many directions.

d

Integrate across light source to
get penumbra

Distribution ray tracing was  introduced by Cook et al  in 1984.
Originally it was called distributed ray tracing, but that name is now
referred to ray tracing on parallel processors. The great contribution
of distribution ray tracing is the recognition that integrals have to
be  performed over area, direction, and time to produce realistic images.
A single ray for each surface isn’t enough −− many rays have to be
distributed over the area, or direction, or time, to compute the
illumination effect.

To compute penumbra, rather than casting a single ray to the light 
source, an integral of the light from the source over the area of the
source is needed. The integral is evaluated numerical by taking many
sample points on the source and casting rays towards each of the points
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s

Integrate over a cone around mirror
angle to get fuzzy reflections.

Also:

integrate across pixel to antialias

integrate across time to
            simulate motion blur

Distribution Ray Tracing

To compute the effect of "fuzzy" specular reflection, and integral needs
to be computed to collect the effect of light coming in from a cone of
directions around the direction of specular reflection. In this case, many
rays are cast within the cone of directions.

Integrating by taking many point samples can be used to solve many problems 
in rendering. "Jaggies" or stairstep edges can be "antialiased" by sampling many
points on the area of a pixel and integrating the effect of all the surfaces visible
through the sample points. If an animated scene is being rendered, the phenomenon
of motion blure can be simulated by casting rays  for into the scene for many
points  in time, and integrating the effect of all of the objects that are visible at
different times.
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Lo(θo,φo) = 

(1/Ωcone)∫ ksLsp(θsp,φsp) dω+

kd∫cosθsocosθfsLe,so/r2 dA +kaLa

Distribution Ray Tracing

Integrals too complex for
analytical solution.

General integration tool:

Monte Carlo

This is the approximation of the rendering equation being solved by distribution
ray tracing. By properly formulating the integral over the area of the light source, 
the solid angle subtended by the light source is included in the approximation.
Because the solid angle subtended decreases as the distance to the source r 
squared increases, this formulation will capture the familiar inverse square
law of light propagation.

Many numerical quadrature methods could be used for performing the integrals
in distribution ray tracing. The most general approach that can be used for evaluating
all of the different integrals is Monte Carlo integration
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Example:  y =  ∫
0
1 x2 dx

Choose 4 random values of x
between 0 and 1:
.981 .097 .503 .299 

y ≈ ( .9812+.0972+.5032+.2992)/4

  = .329

 

(1/Ωcone)∫ ksLsp(θsp,φsp) dω

    − Choose N directions in cone,
    − Evaluate ksLsp(θsp,φsp)  for 
         each
    − Take the average of the 
       evaluated terms

Here is a simple example of using Monte Carlo to evaluate an integral.
In global illumination deciding how to sample the independent variable
(in this case x) is not as obvious, but the principle is the same. See the
article in the appendix on Monte Carlo methods for more detail.

Here is an example of splitting up the integral for fuzzy specular reflection.
The key problem is understanding how to sample the space of directions subtended
by the solid angle in an unbiased manner.
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Distribution Ray Tracing

PLUSES:

− fuzzy reflections
− fuzzy shadows
− 1/r2 fall−off

Distribution Ray Tracing

MINUS:

− still rely on arbitrary ambient
    term for the effects of many
    types of interreflections.
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Monte Carlo Path Tracing

Insight: extend distribution
ray tracing to account for all
possible interreflections.

Monte Carlo Path Tracing

Naive approach: at each
surface, follow a random direction
to recursively estimate the 
incident light, until you happen
to hit a light source.

The rendering equation is an integral equation −− a Fredholm integral
equation of the second kind. The idea of integration used in 
distribution ray tracing can be extended, but instead of tracing
a lot of rays from each point to evaluate the integrals, a recursive
approach is needed, because we want to estimate all radiances,
rather than using the arbitrary La term. This idea was presented in
Kajiya’s 1986 paper on the rendering equation.

3−11



In other disciplines such as radiative heat transfer, Monte Carlo simulation is
found to follow many light paths  from a source to a receiver.

SOURCE

A

B

 Because light can travel either way (if light can reach point B from point A, it can also reach
point A starting at  B), we can also find all the important paths by just reversing the
direction (swapping source and receiver). In our problem the source is the light source,
and the receiver is the eye.
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Monte Carlo Path Tracing

Monte Carlo Path Tracing

In Monte Carlo Path tracing, paths of rays are found starting with the eye.
When the first surface is hit, a random direction is chosen to estimate the
incident radiance for that surface. When the next surface is hit, another 
random directionis chosen to estimate the incident radiance for that surface.
This continues until a light source is hit for which the radiance is known, and
no further integration is needed.

It may take a long time to reach a light source, or many rays may never hit a source.
For enclosed spaces with large light sources though, naive Monte Carlo path tracing
can produce an image of sorts after a reasonable wait...
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Monte Carlo Path Tracing

Insight: At each point estimate
TWO not just one integral:
one over the light sources
and one over everything
else visible in the hemisphere.

Monte Carlo Path Tracing

To improve the convergence of the method, instead of just doing a reverse
simulation, split the integral of incident  illumination into two parts By evaluating
the integral over light sources every time a surface is hit, non−zero values  along
the path are evaluated much more quickly.

By estimating the light source every time, the rays aren’t just in a single path, but
there are branches of the path to the light source from every surface hit along the 
way.
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Monte Carlo Path Tracing

When does the path stop?

− arbitrary depth
− fixed threshhold
− Russian Roullette

Monte Carlo Path Tracing

PLUS: Complete Solution to
the Rendering Equation

MINUS: Noise, unless you
have A LOT of samples.

Since light sources are hard to hit, some paths may go on indefinitely. However,
for every surface in the path there is less light accumulated, since every surface
absorrbs a little light. Paths can be terminated by limiting the depth, or ignoring
paths that can contribute no more than a particular threshhold to the current result.
An unbiased method stochastic method for terminating the paths is known as
Russian Roullette.
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Here are a couple of examples of the noise you get in a Monte Carlo solution.
These are computed with the shot at the light source (the noise would be worse
in a naive Monte Carlo solution. )The noise level in a Monte Carlo solution decreases
with the square root of the number of samples taken. To reduce the noise by a factor
of 2 (reducing it by any smaller factor will hardly be noticeable to your eye),
4 times as many samples are needed.

A common question is, why not just filter out the noise? The problem is differentiated
the noise and the signal. Just blurring the image to get rid of the bright spots also blurs
all of the real features in the image. In some cases, after a lot of sampling it may be able
to detect isolated areas of noise and filter them. This is from Rushmeier and Ward 1994,
and shows a caustic cast by a small blue specular surface onto the ceiling being filtered
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Backwards Ray Tracing

for finding caustics

aim from source to
specular surfaces

collect samples on diffuse surface

Backwards Ray Tracing

Caustics are a feature that are difficult to capture. With Monte Carlo path tracing,
the paths are hard to find, so take a large number of samples to hit.. An alternative
approach, originally proposed by Arvo, is to trace the rays from the light source.
Actually, this should be "forward" ray tracing, since it is how light naturally travels.
In graphics though we normally start at the eye, so this is "backwards" compared to
other ray tracing techniques.

In backwards ray tracing packets of light are deposited onto diffuse surfaces showing
where caustic paths end. To make a picture at the end, some method of smoothing
these point samples has to be used to make a smooth bright spot.
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The RADIANCE Algorithm

Modified Monte Carlo−type
path tracing −
− reorganizes sampling
− reuses samples

Included in comprehensive 
software package

A freely available ray tracing system is Radiance, written by Greg Ward Larson. 
It is a comprehensive lighting package that allows accurate , physical definition
of the scene, and incorporates the common graphics primitives such as meshes,
polygons, bump maps, texture maps. It also has many postprocessing features such
as interpolation for image based rendering, and filters for tone mapping. It can be
downloaded freely from the net, a course is being presented at SIGGRAPH 98 in
using the software, and a book (with CD−ROM) is a available to learn about the package.

Andrew Glassner, "Space subdivision for fast ray tracing" IEEE Computer 
Graphics and Applications, 4(10):15−22, October 1984.

Turner Whitted, "An improved illumination model for shaded display" 
Communications of the ACM, 23(6):343−349, June 1980.

Robert L. Cook and Thomas Porter and Loren Carpenter, "Distributed  ray 
tracing",  Computer Graphics (ACM SIGGRAPH ’84 Proceedings)  18(3): 
137−−145.

James T. Kajiya, "The rendering equation," Computer Graphics (ACM 
SIGGRAPH ’86 Proceedings),
20(4)143−150.

Holly Rushmeier and Greg Ward "Energy Preserving Non−Linear Filters" 
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Radiosity
view independent solutions

for diffuse scenes

Diffuse surfaces have one radiance
(color) for all viewing directions

Finite approximation

infinite detail 9 colors

Lr(θr,φr) =      fr(θi,φi,θr,φr) Li(θi,φi) cos θi dωi

Rendering equation

L r =      (ρd/π) Li(θi,φi) cos θi dωi

Diffuse rendering equation
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Lr =      (ρd/π) Li(θi,φi) cos θi dωi

Diffuse rendering equation

L r  is just   ρd  times the average 
radiance indicent at a point. 

Lr =      (ρd/π) Li(θi,φi) cos θi dωi

Diffuse rendering equation

Suppose we assume that we break the
environment up into N patches and
that each patch has a single reflectance
and radiance Rj and Lj.

Lr =      (ρd/π) Li(θi,φi) cos θi dωi

Diffuse rendering equation

L j =      (Rj/π) Lk cos θjk  (gikdΑkcos θkj /Djk
2)

Diffuse rendering equation−− finite approximation

L j =      (Rj/π) Lk cos θjk  (gikdΑkcos θkj /Djk
2)

Diffuse rendering equation−− finite approximation

L j =  Σ Rj cjk Lk

Diffuse rendering equation−− finite approximation

k=1

N
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L1 =  E1 + R1 c11 L1 + R1 c21 L2 + R1 c31 L3 
Diffuse rendering equation−− finite approximation

L2 =  E2 + R2 c12 L1 + R2 c22 L2 + R2 c32 L3 

L3 =  E3 + R3 c13 L1 + R3 c23 L2 + R3 c33 L3 

1−R1c11    −R1c21     −R1c31     L1  =   E1

  R2c12     1−R2c22    −R2c32     L2  =   E3

  R3c13       −R3c21    1−R3c33    L3  =   E3

1−R1c11    −R1c21     −R1c31     L1  =   E1

  R2c12     1−R2c22    −R2c32     L2  =   E3

  R3c13       −R3c21    1−R3c33    L3  =   E3

     1          −R1c21    −R1c31    L1   =   E1

−R2c12            1        −R2c32    L2   =   E2

−R3c13    −R13c23        1          L3   =   E3

cii is zero−− 
a polygon does not illuminate itself.

Compute all cjk  and then solve sys tem....

BUT  O(N2) storage and  O(N3) computation time.
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Hierarchical methods

initial condition

iteration 2

iteration 1

iteration 3

For hierarchical methods, each path is multi−resolution

Usually an adaptive hierarchy is used cij  = fraction of rays that hit patch j

patch i
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patch i

Z−buffers can work too....

area distortion
must be corrected
by a weight for each
pixel.  And five
screens should
be used.

Displaying solutions

real constant linear

Illumination textures

tiled reflectance 
texture map

illumination
texture map

composite

Where to go from here

Examine how solutions scale

Non−polygonal objects

Optimization of display meshes

Memory is usually the bottleneck
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Current
Trends

A great deal of work has been done beyond the basics covered in this course
and continues to go on.  A good way to track the progress in global illumination
research is to browse through the Proceedings of the Eurographics Rendering
Workshop that has been held annually since 1990. The Proceedings are published
as a volume by Springer−Verlag.
In this section we look at some of the areas that are still open problems, or that 
are new approaches that are being considered

Radiosity Methods: Clustering

For complex environments, it is not practical to consider solving the simultaneous
equations for individual surface to surface or object to object interchange. The transfer
of light between clusters of objects is a way to deal with this. Smits et al. presented a
clustering technique at SIGGRAPH 1994 for diffuse surfaces using different levels of links, 
while Sillion presented a method at the Eurographics Rendering Workshop that year
that modelled clusters of objects as voluemes of particpating media. Recently Christenson
et al. presented a clustering method for glossing surfaces in ACM Transactions on 
Graphics, 1997.
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Radiosity: Real Time Object
Motion

Radiosity solutions can be displayed in real time as long as the viewer only moves.
If objects move, and new radiosity solution is needed. Since Baum et al.s  1986 Visual
Computer paper on exploiting temporal coherence, many techniques have been
proposed. Most recently Forsyth et al. (ERW94), Shaw (Computer Graphics Forum 1996),
and Drettakis and Sillion (SIGGRAPH 97) have developed efficient techniques for
updating hierarchical radiosity solutions for animated scenes.

Radiosity: Meshing Techniques

Work continues to make discontinuity meshing more efficient. The problem is
to adequately discretize to capture visible discontinuities, but not to discretize for
discontinuities that will not ultimately be visible in the final image.
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Particle Tracing

The basic idea of particle tracing is to do a traditional forward radiative transfer
from the light source. Like  backwards ray tracing, some sort of smoothing, or
more properly signal reconstruction, has to be performed to convert the deposited
particles into a coherent image. Pattanaik presented a particle tracing technique in
his 1993 dissertation, and recently a highly refined version of the method has been
presented by Walter et al. in ACM Transactions on Graphics, 1997 An alternative
approach called "photon maps" was developed by Jensen to use particle tracing for part of
the illumination solution, and was presented at the ERW in 1996. A paper on using photon
maps for volumes is being presented here at SIGGRAPH 98.

Bidirectional Ray Tracing

It  was clear for many years, that sometimes it is efficient to trace from the light, and
sometimes  from the eye. The problem was to formalize this idea into robust methods
Robust bidirectional path methods were  independently developed by Veach and Guibas
(SIGGRAPH 95) and LaForturne and Willems  (Computer Graphics Forum, 1994).
Eric Veach has developed a method beyond this to more efficiently find important
light paths using a variation of simulated annealing known as the Metropolis
Algorithm (SIGGRAPH 97).
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Tone Mapping

mapping the dynamic range

100000:1   −−−> 30:1

illumination
solution

CRT

Global illumination techniques produce images with a much higher dynamic range
that can be displayed by CRT’s or prints. Mappings for going from one range to
another are discussed in more detail in the Appendix from Solution to Image.
Understanding what the mapping will be though can be used to reduce the calculations
in the illumination solution. An example of this is presented by Gibson and Hubbold,
in Computer  Graphics  Forum 1997.

Image Based Rendering

The idea of image based rendering is to make images from images, rather than from
explicit geometric descriptions.

(a)

(b)
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freedom of movement

accurate
rendering

BBBBBBB

polgons with 
hardware lighting>>>>

>>>>
radiosity 
walkthroughs

//
//

image−based
walk−throughs

88
88
88
88pre−recorded

animation

(geometric
detail
AND
lighting
accuracy)

(location,view, AND object motion)

&&&
&&&

real
life

There are a number of trade−offs between polygonal representations,
and image based representations.

Types of Image Based Representations

Range Images:
store radiance
and distance at
each pixel

Light Field/
Lumigraph:
no geometry,
just radiances
as a function
of direction

There are different types of possible image based representations
of a scene. The problem for global illumination research is, what
is the most efficient method to use for to generate a particular
representation. This question is discussed for range images
in Nimeroff et al. IEEE TVCG 1996.

5−5



Combining Real and 
 
Synthetic Environments

real scene

insert synthetic
object realistically

Perhaps the greatest application area for global illumination methods will be 
placing synthetic objects into representations of real scenes. Illumination
has to be consistent between the real and the synthetic for the result to be believable. 
In the past, the adjust ment to make the combinations look right have been done
in an ad hoc manner. Early work was done by Fournier et al (Graphics Interface 1993) combining
video captured images and radiosity solutions. With computer graphics and computer vision 
becoming closer in the area of graphics input acquisition, and image based rendering, a lot 
of progress will be made in this area in  the next couple of years.

Bouatouch, K. and C. Bouville, Eds. 1992.  Photorealism in Computer Graphics. 
Berlin, Germany: Springer−Verlag.  (Proceedings of 1990 Workshop)

Brunet, P. and F. W. Jansen. Eds. 1994.  Photorealistic Rendering in Computer 
Graphics. Berlin, Germany: Springer−Verlag. (Proceedings of 1991 Workshop)

Cohen, M., C. Puech, and F. Sillion. Eds., 1993.  Fourth EUROGRAPHICS 
Workshop on Rendering,  Eurographics Technical Report Series EG 93 RW. 
Aire−la−Ville,  Switzerland: Eurographics Association. ISSN 1017−4656. 

Sakas, Shirley, Müller, Eds., Photorealistic Rendering Techniques  
Springer−Verlag, Berlin, Germany.  (Proceedings of 1994 Workshop.)

Hanrahan and Purgathofer, Eds., Rendering Techniques’95, Springer Wien. 
1995.

Pueyo and Schroeder, Eds., Rendering Techniques’96 Springer Wien1996. 

Dorsey and Slusallek, Eds., Rendering Techniques’97 Springer Wien,1997.
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CURRENT TRENDS:
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Developing the Rendering Equations

Kurt Zimmerman
Indiana University

As stated, physically based rendering simulates the movement of light throughout an environ-
ment. It is important that we understand the units involved in measuring light. As we will see, it
is sometimes useful to use different units depending on the application. This also provides us with
mathematical framework for describing the rendering process.

We will assume geometric optics in our measurements. This means that we will use the particle
theory of light. We can get away with this because most visual phenomenon can be modeled with
this assumption in place, diffraction and interference being the notable exceptions. We will also
assume that the speed of light is infinite, which implies that any simulation is in a steady state. This
is usually appropriate since the time it takes light to travel in common scenes is not perceivable.

The following sections touch briefly on several important concepts, which are handled in much
detail by Glassner [3].

1 Solid Angles

Key concepts in the radiometric definitions are the ideas of solid angle and projection. When we
think of a solid angle we usually think of some object projected onto a unit sphere. This projection
is the solid angle of the object as view from the center of the sphere (Figure 1). The units for solid
angles are steradians,sr, which are actually unitless but are usually left in for clarity.

The relationship between a differential area on a sphere and the corresponding differential solid
angle can be described in the following way: A differential area,dA, on a unit sphere is equal to
its solid angle,d!̂. If dA is on a non-unit sphere, then the difference between the two is anr2 term
wherer is the radius of a sphere. In Figure 2 describes this in detail. Here we see two hemispheres.
The inside hemisphere hasr = 1. SincedA has a horizontal side of lengthr sin � d� and a vertical
side of lengthr d� the differential area is:

dA = r2 sin � d� d� (1)

and the differential solid angle is:d!̂ = sin � d� d�

2 Projections

The relationship between the area of surface elementdA and the projection of that surface onto a
plane is:

projA = cos � dA ; (2)

as shown in Figure 3.
Finally, we can consider a differential areadA0 which does not lie on a great sphere. Projecting

this onto a sphere is equivalent to projecting it onto a plane which is perpendicular to the ray running
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Figure 1: Solid Angle of an object viewed fromx

x

cylidrical luminaire

unit hemisphere

solid angle of luminaire

normal

normalθ’

x’

ω’

θ

ω

view point

Figure 2: Relationship between area and solid angle on a sphere
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n

θ

dA

dA cosθ

nA

Figure 3: Projection of a surface element onto a plane

from the center of the sphere to the center ofdA0. Thus from Equations 1, 3 and 2 we get the
relationship between a differential solid angled!̂0 and an arbitrarily oriented differential areadA0:

d!̂0 =
dA0 cos �0

jjx0 � xjj2
; (3)

wherex is the sphere center andx0 is the center ofdA0.

3 Radiometry

In general, physically based computer graphics algorithms do not chase light particles or photons
around the environment. Usually the computational quantity of flow that is measured throughout an
environment isradiant fluxor radiant powerwhich is generally denoted by the Greek letter� and
measured in Watts. Radiant power has no meaning at a particular point in an environment, therefore
we need different quantities to represent the interaction of radiant power and surfaces. The most
important of these quantities isradiance.

4 Radiance

Radiance is a fundamental quantity usually associated with a light ray. The radiance leaving or
arriving at a given point,x, traveling in a given direction,̂!, can be defined as the power per unit
projected area perpendicular to the ray per unit solid angle in the direction of the ray. Following
notation similar to the IES1 standard we have:

L(x; !̂) =
d2�(x; !̂)

dA cos � d!̂
; (4)

1The Illumination Engineering Society or IES notation is the standard for illumination engineering. Notation and
definitions can be found in the ANSI/IES report [5].
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Figure 4: Radiance between differential surfaces.

where� is power,dA is the differential area surroundingx, � is the angle between the ray and the
surface normal atx, andd!̂ is the differential solid angle in the direction of the ray.2

Radiance is a convenient quantity to associate with a light ray because it remains constant as it
propagates along a direction (assuming a vacuum). To see that this is true we need to look closely
at the definitions. We can reorganize the above definition in terms of radiant flux:

d�(x; !̂) = L(x; !̂) cos �d!̂dA : (5)

Using the geometry of Figure 4 and assuming a vacuum, the law of conservation of energy says
that the flux leaving surface one in the direction of surface two, must arrive at surface two, more
concisely:

d�(x1; !̂1) = d�(x2; !̂2) :

Thus

L(x1; !̂1) cos �1d!̂1dA1 = L(x2; !̂2) cos �2d!̂2dA2 : (6)

From the previous definitions we see thatd!̂1 = (dA2 cos �2)=r
2 andd!̂2 = (dA1 cos �1)=r

2

wherer2 = x1 � x
2
2, �1 = (n̂1 � !̂1) and �2 = (n̂2 � !̂2). Dividing each side of Equation 6

by dA1(cos !̂1 dA2 cos !̂2)=r
2 we see thatL(x1; !̂1) = L(x2; !̂2). Notice that the definition of

radiance lends itself to some confusion about the direction of flow. For this reason Arvo [1] uses
the termsurface radiance, Ls(x; !̂), to refer to light leavingx in direction !̂ andfield radiance,
Lf (x; !̂), to refer to light arriving atx from direction!̂.

Radiance is considered a fundamental quantity not only because it is convenient but because all
other radiometric and photometric quantities can be derived from it as can be seen in the appendix.

2Note that Equation 4 should be written as a second order partial derivative in the form@
2
�

@A cos � @!̂
, but we will stick

with convention.
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Figure 5: Geometry for BRDF.

5 BRDF and BTDF

Now that we have radiance to characterize the flow of light traveling between two surfaces a function
is needed to describe the reflection of light off a surface. We would expect that the reflection of light
off a surface is proportional to the light arriving at the surface. The function that describes this
proportionality is thebidirectional reflectance distribution functionor BRDF, Figure 5

fr(x; !̂
0; !̂) =

dLr(x; !̂)

Lf (x; !̂0) cos �d!̂0
; (7)

whereLf is the field radiance andLr is the reflected radiance. Note thatLr is used instead of the
surface radianceLs. The reason for this distinction will become clear in the next section. Note
also that the denominator of Equation 7 is irradiance as described in the appendix. Aphysically
plausibleBRDF maintains two important properties:

1. The BRDF must follow theHelmholtz reciprocity principle. This states that the BRDF will
be the same if the incident and reflected light is reversed. Stated,

fr(x; !̂
0; !̂) = fr(x; !̂; !̂

0) (8)

2. The BRDF must uphold the law of conservation of energy. Therefore the outgoing radiance
must be less than or equal to the incoming radiance. If the BRDF is integrated over the
hemisphere of reflected directions we will get the total reflectance for an incoming direction
!̂0. This value must be less than or equal to one:

R(x; !̂0) =

Z



fr(x; !̂
0; !̂) cos �d!̂0 � 1:0 : (9)

Several models for BRDF are described in Glassner [3] including the most commonly used
models of Lambert and Phong, as well as more complicated models employing Fresnel equations
and the empirical models of Ward [11]. An additional model which is not covered by Glassner
but deserves mention is the modified Phong model of Lafortune and Willems [7]. Lafortune and
Willems modify the Phong model so that it obeys the Helmholtz reciprocity principle. As pointed
out by Shirley [10] it is difficult to tell whether or not it is necessary to have a physically plausible
BRDF in order to produce realistic images.
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For some surfaces that transmit light, the BRDF must be combined with thebidirectional trans-
mission distribution function, BTDF. This allows us to render images of glass, lamp shades and
ultra-thin metals.

6 The Rendering Equation

Previously, radiance was defined as means of expressing the light traveling between two surface. In
the previous section, the BRDF was defined as the interaction of light with a surface. These two
ideas can be combined to form an equation that describes the flow of light throughout an environ-
ment. Notice that by rewriting Equation 7 we get the following:

dLr(x; !̂) = fr(x; !̂
0; !̂)Lf (x; !̂

0) cos �d!̂0

This is the reflected radiance in terms of the incoming radiance from one ray and the BRDF.
The total reflected radiance at a point,x, in direction,!̂, combine with any emitted radiance,Le, to
form surface radiance,Ls:

Ls(x; !̂) = Le(x; !̂) +

Z

i

fr(x; !̂
0; !̂)Lf (x; !̂

0) cos �d!̂0 ; (10)

wherecos � = (n̂ � �!̂0). This is therendering equationin terms of directions as first introduced by
Immel et al.[4]. Sometimes it is more convenient to express Equation 10 in terms of surfaces. We
can do this by using the definition from Equation 3 to get:

Ls(x; !̂) = Le(x; !̂) +

Z
A
g(x;x0)fr(x; !̂; !̂

0)Lf (x; !̂
0)
cos � cos �0dA

jjx0 � xjj2
; (11)

wherejjx0 � xjj is the distance fromx to x0, cos �0 = (n̂0 � !̂0), and

g(x;x0) =

(
1 if x is visible to x0

0 otherwise:

This geometry term is necessary since some surfaces might be blocked. Equation 11 is the form
similar to that of Kajiya’s landmark paper[6]. The geometry for the rendering equation can be seen
in Figure 6.

We must keep in mind thatLf (x; !̂
0) = Ls(x

0; !̂0) in Equations 11 and 10 . By replacingLf

with Ls we see that Equations 11 and 10 are integral equations.

A Appendix: Radiometry and Photometry

This appendix was written in an attempt to clarify the relationship between radiometry and photom-
etry. This clarification was necessary because our ray tracer associates a value of radiance with each
ray traced. However, the illumination engineering community specifies luminaires with photometric
values.

In order to use the value associated with a luminaire sample, we had to transform it into spectral
radiance. It should be noted that in the literature the termradianceusually impliesspectralradi-
ance, averaged over a band of wavelengths (such as the red, green, or blue portions of the visible
spectrum).

The first step was to understand the radiometric and photometric terminology according to
ANSI/IES (1986)[5].
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Figure 6: Geometry for the rendering equation

A.1 Important Radiometric Terms

1. Radiant energy,Q. Energy traveling in electro-magnetic waves, measured in joules.

(a) Spectral radiant energy,Q� = dQ=d�, measured in joules per nanometer,joules=nm.

2. Radiant Flux (radiant power), � = dQ=dt. The time rate of flow of radiant energy, mea-
sured in joules per second or watts= W .

(a) Spectral Radiant Flux,�� = d�=d�, measured inW=nm.

3. Radiant flux density, d�=dA. The quotient of the radiant flux incident on or emitted by a
differential surface elementdA at a point, divided by the area of the element. The preferred
term for radiant flux density leaving a surface is exitance,M . The preferred term for radiant
flux density incident on a surface is irradiance,E. Measured in watts per square meter,
W=m2.

(a) Spectral radiant flux density, d��=(dA d�). In terms of exitance it isM�=d�. In
terms of irradiance it isE�=d�. Measured inW=(m2 nm).

4. Radiant intensity, I = d�=d!. The radiant flux proceeding from a source per unit solid
angle in a given direction. Measured in watts per steradian,W=sr.

(a) Spectral radiant intensity, I� = dI=d�. Measured inW=(sr nm).

5. Radiance,L = d2�=[d!(dA cos �)]. Power per unit projected area perpendicular to the ray
per unit solid angle in the direction of the ray. Measured inW=(m2 sr).

(a) Spectral radiance,L�.
L� = d3�=[d!(dA cos �)d�]. Measured inW=(m2 sr nm).

6-7



A.2 Important Photometric Terms

Note that the symbols for radiometric and the corresponding photometric terms are the same. In
cases where the terms might be confused radiometric terms will be identified by the subscripte and
photometric terms will be identified by the subscriptv.

1. Luminous flux �. Radiant flux evaluated in terms of a standardized visual response. Mea-
sured in lumens,lm.

�v = Km

Z
�

�e;�V (�) d�

where
�v = lumens
�e;� = watts per nanometer
� = nanometers
V (�) = the spectral luminous efficiency
Km = the spectral luminous efficacy in lumens per watt (lm=W )

The above definition of luminous flux is for photopic vision andKm has the value683 lm=W .
For scotopic visionV (�) is replaced byV 0(�) andKm is replaced byKm0 = 1754 lm=W .

2. Luminous flux density, d�=dA This item is usually referred to as illuminance,E, if lumi-
nous flux density is incident on a surface element, and luminous exitance,M , if luminous
flux density is leaving a surface element. Measured inlm=m2

3. Luminous intensity, I = d�=d!. The luminous flux per unit solid angle in a certain direc-
tion. Measured inlm=sr or candelas.

4. Luminance,L = d2�=[d!(dA cos �)]. The definition is the same as radiance. The units are
lm=(m2 sr).

A.3 Deriving Everything from Radiance

All of the above definitions can be derived from spectral radiance. This is an important exercise
which will help clarify the relationship between radiance and the other radiometric and photometric
terms. In the following list, spectral radiance will be referred to as the functionLe(x; !; �).3

1. Spectral Radiometry

� Spectral radiant energy

Qe;� =

Z
T

Z



Z
x2A

Le(x; !; �) cos � dA d! dt

� Spectral radiant flux

�e;� =

Z



Z
x2A

Le(x; !; �) cos � dA d!

3We define only spectral radiometry since the corresponding radiometric terms can be found by integrating the spectral
radiometric terms over the appropriate range of the light spectrum

6-8



� Spectral radiant flux density (in terms of irradiance)

Ee;� =

Z



Le(x; !; �) cos � d!

� Spectral radiant intensity

Ie;� =

Z
x2A

Le(x; !; �) dA

2. Photometry

� Luminous flux

�v = Km

Z
�

Z



Z
x2A

Le(x; !; �)V (�) cos � dA d! d�

� Luminous flux density(in terms of illuminance)

Ev = Km

Z
�

Z



Le(x; !; �)V (�) cos � d! d�

� Luminous intensity

Iv = Km

Z
�

Z
x2A

Le(x; !; �)V (�) dA d�

� Luminance
Lv = Km

Z
�

Le(x; !; �)V (�) d�

A.4 IES Luminaires and Spectral Radiance

The IES photometric data file format [8] defines the three-dimensional distribution of light emitted
by a luminaire. The distribution is defined for a point light source even though most luminaires are
clearly not point sources. The file format specifies luminous intensitiesIv for a set of vertical and
horizontal directions, thus allowing for non-uniform distributions. To compute spectral radiance
from this information we must make two assumptions: the distance from the luminaire to a point
on the illuminated surface satisfies the “five-times” rule, and the spectral output of the luminaire is
known. The five-times rule states that the luminaire can be modeled as a point source if distance
from the luminaire to the point on the illuminated surface is greater than five times the maximum
projected width of the luminaire as seen from the point. (In other words, the luminaire must not
exceed a subtended angle of 0.2 radians as seen from the point.) If this rule is satisfied, the error for
the predicted illuminance will be less than�1 percent [2].

The five-times rule allows us to model the luminaire as a photometrically homogeneous lumi-
nous aperture. That is, any point on the luminous surface of the luminaire will exhibit the same
three-dimensional photometric distribution of luminous intensity as does the point source being
used to represent the luminaire in the IES photometric data file.

Usually the type of lamp used in the luminaire will be defined in the IES file ( although different
lamps may be often be used when luminaire is installed). By maintaining a database of spectra that
correspond to particular lamp types, we can satisfy the second assumption. Spectra from a number
of generic lamp types are presented in the IES Lighting Handbook [9], while spectra for specific
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lamps are often available from the lamp manufacturers. These spectra are given in terms of watts
per nanometer, or spectral radiant flux (�e;�). This allows us to derive the spectral radiant exitance
Le;� as follows:

The known quantities are luminous intensityIv = d�v=d!, spectral radiant flux�e;� , the
maximum spectral luminous efficacyKm = 683, and the photopic luminous efficiency curveV (�).
The goal is spectral radianceLe;�.

Based on our assumption that the luminous surface of the luminaire is photometrically homo-
geneous, we have:

Le;� =
d Ie;�

dA cos �
=

Ie;�
A cos �

(12)

where A is the luminous surface area of the luminaire as seen from the point on the illuminated
surface and� is the mean angle between the luminous surface normal and the direction of the point.
(Remember that we are modeling the luminaire as a point source.) Therefore, we will have a solution
for Le;� if we can solve for the spectral radiant intensityIe;�.

We also have:

Lv =
dIv

dA cos �
=

Iv
A cos �

(13)

Now it is evident that the luminanceLv at the point on the surface is directly proportional to
the amount of luminous flux�v received at that point. The same argument must therefore hold for
spectral radiance:Le;� is directly proportional to the spectral radiant flux�e;�. This gives us:

Le;�

Lv
=

�e;�

�v
(14)

Rearranging terms gives us:

Le;� =
Lv�e;�

�v
=

Iv�e;�

(A cos �)�v
(15)

However:
�v = Km

Z
�
�e;�V (�) d� (16)

and so spectral radiance can be defined as:

Le;� =
Iv�e;�

(A cos �)Km

R
� �e;�V (�) d�

(17)
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Global Illumination Input

Holly E. Rushmeier

This is an updated version of "Radiosity Input" that appeared in the course notes for
"Making Radiosity Practical" at SIGGRAPH 93

1 General Remarks

A method for computing global illumination requires as input a geometric description of
objects in an environment and their radiative properties. Restrictions on the geometries and
properties (e.g. polygons only, perfect diffuse surfaces) obviously depend on the particular
method and particular implementation of the method.

Geometry: One brief observation – an image will not appear realistic unless the
geometric description is realistic. Remarkably realistic images can be synthesized with
accurate geometry and direct illumination alone. Besides actually measuring geometries
yourself (either with a measuring stick or more sophisticated three-dimensional scanner),
typical dimensions for common architectural spaces and furniture can be obtained from
handbooks such as [40]. Some sample geometry is available for free download at the
Materials and Geometry Format website, at http://radsite.lbl.gov/. Commercial companies
such as Viewpoint Datalabs sell libraries of three dimensional models.

Also, geometry can be modelled at different levels of detail, as discussed in [21]. At
the largest scale are geometric representations such as triangle meshes, quadric surfaces and
NURBs. At a finer scale are mappings such as bump maps and height fields. A method for
changing between these representations is discussed in [6]. Bump maps and height fields
can be obtained by processing scanned point clouds [23] or can be captured directly [30].

Color: Radiosity methods do not take colors as input, and they do not explicitly
calculate colors. Radiosity methods take as input spectral data for light source emission
and surface reflectances/transmittances at a series of wavelengths in the visible band.
Essentially the wavelengths are chosen so that an accurate estimate of the continuous
spectral radiance distribution leaving a surface can be made. A discussion of determining
appropriate sample wavelengths can be found in [25].

Global illumination methods calculate radiances for each wavelength independently.
The determination of the color associated with the calculated spectral radiance distribution
is performed after the solution is complete, and the radiance distributions are mapped to the
display device.
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2 Emission

There are two major types of light sources – artificial and natural light (i.e. daylight). For
a discussion of selection of sources for a particular environments see [19] or [20].

2.1 Artificial Light – Electrical Fixtures

Data on artificial lighting can be obtained from lighting manufacturers. In particular,
the Ledalite Company (web site http://www.ledalite.com/) has data for their products, an
excellent series of papers on the measurement of light sources by Ian Ashown ([1],[2], [3],
[4], [5]) and many other resources for computing lighting accurately.

2.2 Natural Light

The spectral distribution and luminance for natural light depends on time of day, latitude
and sky conditions (i.e. clear or over cast). Sample values can be found in the [20] or [9].
Note that different values for luminance and for the spectral distribution apply for direct
(direct line to the sun) and indirect (from the hemisphere of the sky). Rough approximations
of relative spectral distributions would be for a clear sky a blackbody at 15000K, for an
overcast sky a blackbody at 6500 K, and for direct sunlight a blackbody at 5800K. A typical
value for the the incident light due to indirect natural light is on the order of 1000 to 5000
cd=m2. The magnitude of direct solar radiation is on the order of 1300 W=m2. integrated
over the entire electromagnetic spectrum (i.e. not weighted by luminous efficiency). A
detailed example of applying the characterics of natural light to the generation of synthetic
images can be found in [35].

Extensive work in simulating natural light using computer graphics global illumina-
tion calculations has been down by John Mardaljevic, and he has prepared a chapter on the
topic for [37], and has a web page describing his work http://www.iesd.dmu.ac.uk/˜jm/

3 Surface Reflectance/Transmittance

The spectral/directional data required to define bidrectional reflectance/transmittance dis-
tribution functions (BRDF/BTDF) for architectural materials is more difficult to find than
the light source data. The BRDF/BRTF depends both on the chemical composition of the
surface and on the surface condition (e.g.. perfectly smooth, rough, oxidized, etc.) Fur-
thermore, many common materials do not have spatially uniform BRDF’s ( i.e. consider
describing the BRDF for wood grain, or speckled formica).

A few electronic databases of BRDF data have recently become available. One is the
Columbia-Utrecht data base at http://www.cs.columbia.edu/CAVE/curet that has measured
data for 61 real world surfaces. Because the BRDF of a real world surface such as bread
or straw varies with position, the data base introduces the concept of a bidirectional texture
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function for representing the data. A description of the data collected and its application to
computer vision can be found in [11].

Another electronic source is the Nonconventional Exploitation Factors Data Systems
data base originally developed by the National Imagery and Mapping Agency. It is currently
in the process of being made available by the US National Institute of Standards and
Technology at http://math.nist.gov/mcsd/Staff/RLipman/brdf/nefhome.html. The database
appears to include materials and characteristics that would be of particular interest in defense
applications.

A database of BRDF for remote sensing from the department of geography at the Uni-
versity of Zurich is located at www.geo.unizh.ch/˜sandi/BRDF/about.html. The goniometer
used to measure this data is very large – so that it can measure the BRDF of a large patch
of grass (for example.)

Non-electronic sources for reflectance/transmittance data include [36] and [8]. These
are excellent references for materials with important thermal engineering applications – data
for the chemical elements and common chemical compounds (e.g. silver iodide, silicon
nitrate, etc.) can be found. However, you won’t find data for many common architectural
surfaces such as "simulated wood grained formica". Furthermore, even for well defined
chemical compounds, full spectral BRDF data is not available. Generally spectral data
is given for normal incidence and hemispherical reflectance or for reflection in the mirror
direction for one specific angle of incidence. [32] contains spectral data (much of it in
the infrared) for similar materials. However[32] also includes some spectral data for some
building materials such as asphalt and brick, and plants such as lichen. Also included is the
reflectance assorted foods such as the brown crust of baked bread (.06 at 400 and 500 nm,
.14 at 600 nm and .38 and 700 nm.)

Handbooks for different fields contain a small amount of data for selected materials.
For example [14], along with the spectral distributions for specular reflections for freshly
evaporated silver and gold mirrors, also lists a spectral distribution for a ripe peach (.1 at
400 and 500 nm, .41 at 600 nm and .42 at 700nm) versus a green peach (.18 at 400nm, .17
at 500 nm, .62 at 600 nm and .63 at 700 nm). Data for other fruit are not given. [33] lists
spectral reflectance for reflections from the water surfaces, as well as the spectral absorption
of light by sea water.

Since full BRDF data is difficult to obtain, one alternative is to calculate a physically
feasible BRDF from various local models given the complex index of refraction and surface
roughness distribution (e.g. [10], [17] [27]). Complex indices of refraction can be found
in handbooks such as [14]. Some sample roughness distribution functions are discussed
in [16]. BRDF data can also be computed by casting rays at a mathematically defined
surface microstructure [39] [15]. For imperfect and weathered surfaces Dorsey et al. have
developed some techniques for representing the reflectances [12] [13].

Another alternative is to measure BRDF. This can be done (at non-trivial expense)
at a commercial laboratory. The description of less expensive measurements of BRDF for
can be found in [35] and [38]. More recently, methods for measuring BRDF have been
developed that use inexpensive video capture systems. Karner et al. describe a system for
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measuring the BRDF of flat samples [22]. Sato et al. describe a system for measuring the
BRDF for which the shape has been measured by a range finding system [31]. Devices that
are sold for print and monitor calibration, such as the Colortron http://www.ls.com can be
used to measure spectral, if not directional, reflectances.

For the purposes of making some trial images here are some "reasonable" room values
for total (i.e. averaged over the visible spectrum) diffuse reflectances (based on information
in [20]):

� ceiling : 0.6 to 0.9, walls: 0.50 to 0.8, floor: 0.15 to 0.35

� furniture: 0.3 (dark wood) to 0.5 (blond wood)

Some typical values for specular materials:

� polished mirror: 0.99, polished aluminum: 0.65

For transmitting materials:

� clear glass: 0.80 to 0.99 basically "specular", solid opal glass : 0.15 to 0.40 basically
"diffuse"

For trial purposes, a complete set of input data for a simple environment can be found
in [24]. A larger set of sample data for a simple room comparison described in [29] can be
found on-line at http://radsite.lbl.gov/mgf/compare.html
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Input for Participating Media

Holly Rushmeier

This originally appeared in the SIGGRAPH 95 course notes on input for global illumi-
nation solutions

1 Introduction

Images of radiatively participating media are aesthetically appealing – curls of smoke,
sunsets, fires and clouds. Generating physically accurate, rather than artistic, images
of participating media is an extremely challenging computational problem. In computer
graphics, significant effort has gone into developing computational methods to account for
attenuation and multiple scattering in participating media (e.g. [27], [4], [32],[18],[5],[24],
[3],[31], [34],[33]). While such methods are still extremely time consuming, the problem is
well understood. However, far less attention has been given into obtaining and/or modeling
appropriate input for rendering participating media. In many cases, getting realistic input
data is much more difficult than computing the light scattering. In this section we will
consider what data is needed and some possible approaches for getting it.

2 Defining The Problem

A reasonable place to begin is to define the problem of physically accurate rendering of
participating media. The geometry of rendering a scene containing a participating medium
is shown in Fig. 1.

As in rendering any realistic scene, the image is computed by finding the radiance
(energy per unit time, solid angle and projected area) L(s) which would pass through an
image pixel to the eye. To form a final image, a weighted average of this value must
be found across the pixel (for antialiasing) and the spectral radiance distribution must be
mapped to the gamut of the display.

Unlike the surface problem, in which it is adequate to find the radiance of the closest
visible surface, in the presence of a participating medium an integral along the line of
sight must be evaluated. Along the line of sight, four processes may occur, absorption,
out-scattering, in-scattering and emission.

2.1 Absorption
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ξ=s

L(s)

ξ=0

θo

Figure 1: The geometry of rendering a scene with a participating medium. An image is
formed by computing the radiance L(s) that reaches the eye through a pixel by integrating
along the line of sight.
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Figure 2: Absorption in a participating medium. Some of the the incident light energy
leaves the path in another form.
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Figure 3: Scattering out of participating medium. Some of the the incident light energy
leaves the path as light traveling in a different direction.

Figure 2 shows absorption – some fraction of the beam of light is absorbed by the
medium. The light energy does not disappear, it is converted into another form. The energy
transferred to the medium causes it to increase in temperature, or the energy is conducted
or convected away. The ability of the medium to absorb light is expressed as the absorption
coefficient �a, the fraction by which the beam of light is reduced by absorption per unit
length traveled along the line of sight.

dL(s)

ds abs
= ��aL(s) (1)

2.2 Out-Scattering

Figure 3 shows out-scattering – some fraction of the beam of light is scattered by the
medium. This light is absorbed by the medium and immediately reradiated, but in directions
that are different from the original path. The ability of the medium to scatter light out of
the path is expressed as the scattering coefficient �s, the fraction by which the beam light
is reduced by scattering per unit length traveled along the line of sight.

dL(s)

ds sca
= ��sL(s) (2)

Bohren gives an example of a simple experiment that illustrates the difference between
attenuation due to absorption and attenuation due to scattering. Referring to Fig. 4, place
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overhead

projector

screen

Figure 4: An experiment described by Bohren, illustrating attenuation by absorption and
by out-scattering

two glass dishes of water on an overhead projector. Add ink to one dish, and milk to the
other. Its possible to add ink and milk at rates such that the projection through the two
dishes is the same on the screen - they have each attenuated the beam from the projector
by the same fraction. However, the dish of ink will look much darker than the dish of
milk. The ink has attenuated the beam by absorption, the milk has attenuated the beam
by scattering. Bohren’s book Clouds in a Glass of Beer[6] describes many other simple
experiments that help develop a physical understanding of the interaction of visible light
with participating media.

Because they both attenuate the radiance of a beam of light, the absorption and scattering
coefficients are frequently combined into the extinction coefficient, �ext:

�ext = �a + �s (3)
dL(s)

ds
= ��extL(s) (4)

The effect of scattering relative to the effect of outscattering is expressed as the single
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Figure 5: Scattering into the participating medium. Some incident light is scattered into
the path.

scatter albedo 
 of a medium:

 =

�s
�a + �s

(5)

Referring back to the milk and ink experiment, the two media have similar extinction
coefficients. The milk has a high albedo relative to the ink.

2.3 In-Scattering

Scattering can also result in augmentation of the beam of light, as diagrammed in Fig. 5.
In-scattering from beams of light from other directions can increase the radiance along a line
of sight. When discussing out-scattering, the directionality of scattering was unimportant –
all that mattered was that light left the path. For in-scattering, the directionality of scattering
is important to understand to what extent light from other directions is scattered into the
path.

The directionality of scattering is expressed by the scattering phase function P (�),
where � is the angle between the direction of scattering and the original path, as shown in
Fig. 6. That is, forward scattering is in the direction for which � is nearly zero. The phase
function is a dimensionless quantity which is equal to the ratio of the radiance scattered
in a particular direction dL(�) to the radiance that would be scattered if the medium were

8-5



incident
direction

θ
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Figure 6: Definition of the angle in the scattering phase function.
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Figure 7: Rayleigh scattering phase function (isotropic shown with very light dotted line).

isotropic (i.e. if the medium scattered equally in all 4� directions d!):

P (�) =
dL(�)

1
4�

R
dL(��)d!

(6)

Two things to note about the phase function are that:

� the value of P (�) is not bounded

� the function of P (�) is normalized:

1

4�

Z
P (�)d! = 1 (7)

Scattering phase functions are shown in polar plots in Figs. 7 and 8.
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Figure 8: Mie scattering for a 525 nanometer radius sphere with index of refraction 1.5 (not
normalized.)
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Figure 9: Emission in the participating medium. Energy in a form other than visible light
enters the volume and causes the emission of visible light into the path.

The increase in radiance along a direction s then, due to scattering from a beam of
radiance L0(�) from direction � to path s is �sL0(�)P (�)ds

4� . Adding up all of the contributions
from all directions gives the increase in direction s as:

dL

ds in scat
=
�s
4�

Z
L(�)P (�)d! (8)

2.4 Emission

Finally, radiance may increase in a path due to emission within a volume, as shown in
Fig. 9. If the emission is due to thermal agitation of the medium, the increase is given by
the product of the absorption coefficient and the blackbody temperature of the medium Lb:

dL

ds em
= �aLb (9)

The reason the absorption coefficient appears in both absorption and emission terms is
based on thermodynamics. Briefly, suppose a volume of medium at temperature T is in
an black (totally absorbing) environment T . Both the volume and the environment emit
radiation at a rate governed by T . If the volume didn’t emit radiation at temperature T
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at the same rate it absorbed, it would spontaneously change temperature – violating the
laws of thermodynamics. This basic idea underlies the various reciprocity relationships in
radiation(e.g. form factor reciprocity and reciprocity of the BRDF, see [36]).

Thermal emission is not the only type of emission that we see day to day. A notable
exception are the fluorescent gases in fluorescent light fixtures. The emission can be
expressed in the same form as Eq. 9, but the expression for obtaining Lb is not the same.

Putting together the four contributions to change in radiance along a path, the equation
of transfer in a participating medium is:

dL(s)

ds
= ��aL(s)� �sL(s) + �aLb +

�s
4�

Z
L(�)P (�)d! (10)

In terms of extinction coefficient and albedo, this can also be written:

dL(s)

ds
= ��extL(s) + �ext(1� 
)Lb +

�ext


4�

Z
L(�)P (�)d! (11)

The product�extds is a dimensionless length in the medium called the optical differential
thickness. Setting the function d� equal to this dimensionless length, Eq. 11 can also be
written:

dL(s)

d�
= �L(�) + (1� 
)Lb + (
=4�)

Z
L(�)P (�)d! (12)

The optical thickness �(s) (also called optical depth or opacity) of a path through the
medium is just the integral of the optical differential thickness:

�(s) =
Z s

o
�extds

� (13)

The extinction coefficient expresses the effect a differential volume has on the incident
light. The optical thickness of a medium expresses the effect of the entire extent of the
medium. The optical thickness of a medium is a dimensionless length that can be used to
compare the effects of volumes of medium. For example, a glass of milk of diameter 5 cm
will attenuate a beam of light much more than the same glass filled with cigarette smoke at
a density typically found in a restaurant. However, a volume of milk with optical thickness
1 will attenuate a beam of light exactly as much as a volume of cigarette smoke with optical
thickness 1.

Looking at attenuation only, the radiance after traveling along a path s in a medium
from a starting point at 0 is:

L(s) = L(0)e�
R
s

o
�extds� (14)

The quantity e�
R
s

o
�extds� represents the fraction of light that emergences after traveling

through a finite extent of a medium, and is generally referred to as the transmittance � .
Note that � is a function of a finite extent of a medium, it is not a function of a differential
volume at a point in the medium.
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2.5 Summary of the Input Needed

In addition to the input data required for a surface-only problem, the definition of a problem
containing a participating medium requires the definitions of Lb, P (�), �ext, and 
 as
functions of position in the medium. Unlike the surface problem in which geometry
and reflectance properties are treated entirely separately, the definition of the geometry of
a participating medium and its properties are closely coupled. If �ext is given directly
as a function of location, the geometry of the medium is implied. The distribution of
the medium may also be specified by giving partial pressure, volume fraction, or the
density of the medium as a function of location. The values of �ext are computed by
converting these quantities to densities, and using the mass coefficients of extinction (i.e.
(fraction extinction/length)/(mass density)). The spatial distribution of scattering particles
an gases may be constructed (e.g. by thoroughly mixing milk into water), but more often
in environments of interest in graphics, they are determined by complex natural processes.
For most media, the spatial modeling problem is closer to the complexity of modeling plants
and animals than it is to the complexity of modeling a chair or a desk.

We will now look into determining input for participating media – properties of and
emission from a differential volume of medium, and the spatial distribution of participating
media.

3 Properties and Emission for a Differential Volume

Essentially there are two types of quantities we need at a differential volume at some point
in space – the properties of the medium, �ext, 
 and P (�), and the emission Lb. We will
discuss properties first, and then turn to emission.

Similar to the study of surface reflectance, measured values of gas or particulate ab-
sorption and scattering properties may be used directly, or analytical models may be used to
calculate them from more fundamental measurements of optical properties and microscopic
geometry. We begin with the analytical approaches.

3.1 Analytical Models for Properties

Similar to approximations of reflectance at surfaces, there are two common approaches
to modeling the properties of volumetric media – geometric optics for particles that are
large relative to the wavelength of light (e.g. as used in [9] for large surface roughness
scales), and physical optics for smaller particles (e.g. as used in He [19] for smaller surface
roughness scales).

3.1.1 Geometric Optics

Large Specular Spheres The geometry of light intersecting a large specular sphere is
shown in Fig. 10a. The reflectance of a specular reflecting surface as a function of angle of
incidence �(�) is given by the Fresnel equations. Integrating over all incident angles gives
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Figure 10: A ray striking a large specular (a) and diffuse(b) sphere.

the hemispherical reflectance �h. Using the Fresnel reflectance, the properties for a cloud
large specular spheres, with a size distribution of N(R) spheres of radius R per unit volume,
are [36]:

�s = �h

Z
1

0
�R2N(R)dR (15)

�a = (1� �h)
Z
1

0
�R2N(R)dR (16)

P (�) =
�((� � �)=2)

�h
(17)

The scattering and absorption coefficients depend only on the number density of the
particles (which gives the cross sectional area along the path which is blocked by particles)
and the hemispherical reflectance (which determines which fraction of the light which hits
particles is absorbed and which is scattered).

Large Diffuse SpheresThe geometry of light intersecting a large diffuse sphere is
shown in Fig. 10b. The values of �s and �a are the given by the same expressions as for
the specular case. However, the change in directional variation of the reflectance results in
the following the scattering phase function [36]:

P (�) =
8

3�
(sin� � � cos �) (18)

Rainbows Geometric optics can also be used to approximate the scattering that results
in rainbows [7]. Raindrops have diameters on the order of a millimeter, over 1000 times
the wavelength of visible light. Raindrops essentially do not absorb the visible light, and
scattering occurs as a result of internal reflections and transmissions. In particular consider
rays that are refracted, internally reflectance and refracted again as in Fig. 11. Because
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Figure 11: Ray paths that result in a rainbow.

of the curved surface of the raindrop, and the fact that the index of refraction of water is
greater than that of air, the rays are concentrated, or a caustic is formed. Because the index
of refraction is different for different wavelengths, these concentrations are at different
positions for different wavelengths, and we see a bow of colors, rather than just a bow of
bright light. Rainbows occur when the angle of incidence �i to the surface of the drop is
equal to:

cos(�i) =

s
m2 � 1

3
(19)

The angle of scatter � after a single internal reflection is:

� = 2�i � 4�t + � (20)

Geometric optics cannot predict the correct radiance for a rainbow (the geometric optics
theory breaks down, and a value of infinity is obtained). However, Eqs.19 and 20 can be
used to determine when rainbows can occur, and from which vantage points they will be
visible.

3.1.2 Physical Optics

For particles of arbitrary size, electromagnetic theory must be used to accurately develop
an analytical expression for absorption and scattering. A solution of Maxwell’s equations
needs to be found for the electric and magnetic fields inside the particle of interest, and
outside of it. The absorption coefficient, scattering coefficient and scattering phase function
can be found from this solution.

The most famous solution of the problem is for the intersection of a plane wave with
a sphere with an arbitrary radius a and complex index of refraction n + ik, as shown in
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Figure 12: Geometry of the Mie solutions.

Fig. 12. This solution is referred to as the Mie scattering theory. Detailed descriptions of
the solution are given in [7] and [39].

The Mie solutions are generally given in terms of cross sections, Csca for scattering cross
section and Cext for extinction cross section. The scattering and extinction coefficients are
found from these cross sections by multiplying by number density N of particles:

�s = CscaN (21)

The solution is most compactly expressed using Riccati-Bessel functions,  and �, and
expressing the radius as a the ratio of x = 2�(n+ik)a

�
and the ratio m of the indices of

refraction of the sphere to its surroundings. Note that these are both complex numbers. The
coeffiecients which appear in the series solution for the electric fields are then:

an =
m n(mx) 

0

n(x)�  n(x) 
0

n(mx)

m n(mx)�0n(x)� �n(x) 0(mx)
(22)

bn =
 n(mx) 0n(x)�m n(x) 0n(mx)

 n(mx)�0n(x)�m�n(x) 0(mx)
(23)

where the prime indicates the derivative of the function. In terms of these coefficients:

Csca =
2�

k2

1X
1

(2n + 1)(ja2nj+ jb2nj) (24)

Cext =
2�

k2

1X
1

(2n+ 1)Re(an + bn) (25)

Letting Q1
n denote Legendre polynomials (since we have already used P () for the phase

function), for unpolarized light the scattering phase function is given by:

P (�) =
1

2
(j
X 2n+ 1

n(n+ 1)
(an

Qn(�)

sin �
+ bn

dQn(�)

d�)
j2 + j

X 2n + 1

n(n+ 1)
(bn

Qn(�)

sin �
+ an

dQn(�)

d�)
j2)(26)
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Figure 13: Common particle shapes that are not modeled well by Mie theory.

The Mie results are stated in this short form here not as a guide to computation, but to
show that the solution is completely known, and that solutions can be obtained by computing
enough terms in the infinite series – which are convergent. Code is available from many
places to compute the Mie results, such as in the appendix to Bohren. Figure 8 shows
results computed with this code.

Just having a code to compute Mie scattering doesn’t solve the input problem. The
complex index of refraction of the media being modeled is required, as is a size distribution
of the particles in the medium. Furthermore, although it is quite a detailed solution, it
does require the assumption of spherical particles. This is probably a good assumption for
atmospheric clouds composed of water droplets. Water has a complex index of refraction
of 1:33 + i10�8. Reference ([30], p. 187) gives values for the size and number density
of droplets, with radii of 4 �m and number densities of 300 per cm�3 being typical for
atmospheric clouds composed of liquid water droplets (as opposed to clouds composed of
ice crystals).

Frequently, input for Mie calculations is not given directly, but must be extracted from
reports. For example, a special issue of The Journal of Geophysical Research had several
papers recording measurements of the smoke plumes from the Kuwaiti oil fires, eg. [13],
[21]. Overall black plumes were found to be composed of elemental carbon particles, with
a typical diameter of 0:5�m and density of 1000 �gm

m3
. This must be coupled with the

information that elemental carbon has a complex index of refraction of 1:59 + :66i, and
the mass density of solid carbon is 2g=cm3. White smokes were found to be composed
primarily of salts, with particles of 0.2 �m diameter and density of 1000 �gm

m3 . This must
be coupled with a typical complex index of refraction of salt of 1:5 + 0i and mass density
of solid salt of 2:2g=cm3.

Mie theory doesn’t give good results for some particles of interest in rendering, such as
those shown in Fig. 13. Clouds composed of ice crystals are not well modeled with Mie
theory [30]. Dobbins et al. [10] show that for irregularly shaped soot agglomerates, Mie
scattering theory gives results for cross sections that can err by as much as a factor of two.

A special case of Mie scattering theory is scattering from very small particles, generally
known as Rayleigh scattering. For this case the series expansion for the scattering cross
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section of particles is:

Csca =
8

3

�D2

4
(
�D

�
)4j

(n+ ik)2 � 1

(n+ ik)2 + 2
j2 (27)

and the scattering phase function is:

P (�) =
3

4
(1 + cos2�) (28)

Cigarette smoke consists of particles with diameters less than 0.1 �m, and can be
modeled as Rayleigh scatterers. Number densities of particulates in a room with a couple
of smoldering cigarettes is on the order of 50,000 cm�3 [29]. Since the scattering cross
section is proportional to 1

�4
, much more light is scattered at short wavelengths (the blue

end of the visible spectrum) than at longer wavelengths. As a result, scattered light from
cigarette smoke generally looks bluish.

Molecular scattering has the same phase function. However, rather than modeling a
molecule as a particle with diameter D, the scattering cross section is given by [30],p. 166:

Csca = 1:06
8

3
�3
n2 � 1

2

�4N2
(29)

where index of refraction is approximated by:

(n� 1)108 = 6430 +
2; 950; 000

146 � ��2
+

25; 500

41� ��2
(30)

(� in microns.)
A typical value for the number density of molecules in the atmosphereN is2:55x1019cm�3.
The attenuation coefficient for molecular scattering becomes significant only over dis-

tances of kilometers. In the atmosphere, the 1
�4

dependence in Eq. 29 is apparent in the blue
color of the sky.

3.2 Measured Properties

Because measuring the shape, size distribution and optical properties of particles of common
participating media can be extremely difficult, it is often easier to rely on measured values
for scattering and absorption coefficients.

For example [17] describes a workshop on measuring the interaction of light with aerosol
particles. Measurements of absorption coefficients, mass of particles per unit volume of
air, and albedo are given for various test cases using soot, methylene blue, salt and Arizona
road dust. For example the samples of Arizona road dust had typical values of about 7 x
10�6 m�1 for absorption coefficient, and 0:7 for albedo.

To describe measured scattering distributions, fitting Mie parameters would be very
tedious. Instead the Heyney-Greenstein function is generally used:

PHG(�; g) =
1� g2

(1 + g2 � 2gcos�)
3

2

(31)
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The parameter g indicates the asymmetry of the distribution. Reference [30] gives
typical values of �ext, 
 and g for cirrus clouds composed of ice crystals. For example, for
cirrus uncinus, these values are 2.61 km�1, .9999, and 0.84 respectively.

3.3 Emission

Emission from volumetric media is generally rarer in rendering problems than absorption
and scattering. One of the most prominent examples of emission is flames. Most visible
light from flames comes from emission due to thermal agitation from soot. The “blackbody”
radiance is given by Planck’s equation:

Lb =
2C1

�5(exp(C2

�T
)� 1)

(32)

where C1 is approximately 0.59544x10�16 Wm2, and C2 is 14,388 �mK .
A feature of the Planck distribution is that the product of the wavelength of peak emission

and the temperature, �maxT is a constant. This is known as Wien’s displacement law. It
means that the higher the temperature the lower the peak wavelength. For low temperatures,
like room temperature, �max is in the long, infrared wavelengths. The spectrum of sunlight
is approximately the same as a blackbody at 5600 K, with a peak around blue in the visible
spectrum.

Obviously, the temperatures in fires differ. A typical pool fire temperature is on the
order of 1000 K. In this temperature range the flame will tend to look orange or yellow.

Other types of particles may also have emission due to thermal agitation. Siegel
and Howell [36] cite an example in rocket design in which aluminum oxide particles are
introduced into exhaust, and contribute to the luminosity of the plume.

Generally other colors in common flames – the blue color of a methane flame – do not
come from thermal emission, but from electron transitions.

4 Spatial Distribution of Absorbing/Scattering Media

Similar to properties and emission, the spatial distribution of a medium can be computed
from a model, or can be obtained from measurements.

4.1 Fluid Mechanics

In general, the distribution of participating media can be modeled analytically using the
principles of fluid mechanics. There is neither space nor time to discuss particular methods
for solving problems in fluid mechanics, and in this section we simply present some basic
ideas and vocabulary for understanding literature in this area.

A fluid is any substance that moves continuously under a shear stress. Both gases and
liquids are fluids. A fluid is said to be Newtonian if this shear stress is linearly proportional
to the velocity gradient in the medium. The constant of proportionality is the viscosity. The
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Figure 14: Laminar (a) and turbulent (b) flow over a sphere.

viscosity indicates how thick the fluid is – in the sense that maple syrup is much thicker
than water.

The motion of a fluid is governed by the equations of conservation of mass and energy
and the Navier-Stokes equations. The conservation of mass equation is frequently referred to
as the continuity equation. The Navier-Stokes equations express conservation of momentum
in the fluid. Derivations of these non-linear differential equations can be found in any
standard fluid mechanics or heat transfer undergraduate textbook (e.g. [14], [23]), or in
more advanced texts such as [26] and [1]. Full solutions of the Navier-Stokes and mass and
energy equations are rarely required for practical problems. For example some problems
are isothermal, so the energy equation is not needed. In some problems viscous forces are
very small compared to inertial forces, so inviscid equations can be used. When viscous
forces are high relative to inertial forces, creep flow equations can be used.

Generally the fluids literature refers to two regimes of flow – laminar and turbulent,
diagrammed in Fig. 14. Laminar flow is orderly and layered, while turbulent flow is
characterized by rapid fluctuations.Many flows of interest in rendering – such as the smoke
plume from a large fire – are turbulent.

Flows are characterized by the Reynolds number, Re, which quantifies the importance
of inertial to viscous forces. Re is defined as �vL

�
where � is the mass density, v is velocity

L is a characteristic length of the flow and � is the viscosity. The characteristic length
is measured differently for different types of flows, as shown in Fig. 15. The transition
from laminar to turbulent flow occurs at a critical value of Re. In flows below this value,
perturbations are damped out before the flow becomes unstable. In flows with Re larger
than the critical value,the perturbations grow. The Re number for which the transition
occurs depends on the particular flow geometry – it takes on much different values for
pipe flows than for flows over a flat plate. Futhermore, the Re for transition is not a sharp
cut off – transitions are experimentally observed over a range of numbers. Because of
the complicated nature of the Navier-Stokes equations, critical values of Re have not been
derived analytically.
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Figure 15: Definition of characteristic lengths for the Reynold’s number for different types
of flow.

Turbulence is the result of perturbations introduced into the flow when the Reynold’s
number is high enough – such as irregularities caused by surface roughness in a pipe.
Generally pipe flow becomes turbulent at about Re equal to 2000, but when conditions are
carefully controlled, laminar flow has been observed at Re up to 40,000 [35]. In fact there is
no known upper limit to the Re at which laminar flow could be observed, if no perturbations
were introduced to the flow.

Interesting laminar flows can be computed by direct solution of the Navier-Stokes
equations. Mathematically, there are two ways that a flow can be characterized. One way,
referred to as the Lagrangian method, is to follow fluid particles through time. The other
way, the Eulerian method, is to solve for the velocity at each point in space as a function
of time. Generally, a solution for the main fluid (typically water or air) is computed with
the Eulerian approach. A grid with velocities as a function of time is computed. The
distribution of particulates (e.g. water droplets, soot, dust) which scatter and absorb light
can then be found by following them as Lagrangian particles in this flow field.

In principle, solutions for turbulent flow, like laminar flow, could be computed by direct
numerical solution of the Navier-Stokes equations. The problem is that the non-linearity
of the equations requires that the numerical grid be capable of capturing the fluid flow at a
extremely wide range of length scales, to capture both the large scales of the flow (e.g. the
entire length of the fluid being studied) to the small scales at which fluctuations are finally
damped out by viscous dissipation. The range of length scales required grows with Re.
Reference [28] gives the example of a small wind tunnel problem, where the length scale
ranges from 50 mm for the size of the tunnel to 0.1 mm for the dissipation length scales.
A solution would be needed at (50=:1)3 or approximately 108 points. For atmospheric
phenomenon, solutions would be required on grids of on the order of 1020 points.

One alternative to direct numerical simulation is referred to as Large Eddy Simulations
(LES)[2]. In this case an additional model is introduced to account for the effects of
turbulence at subgrid length scales. The results of an LES calculation is show in Fig. 16.
The use of subgrid models is limited, because the non-linearity of the fluid equations
prevents a complete decoupling of the various length scales. This approach is only useful
for the range of flows for which the additional model of subgrid turbulence has been
validated.
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Figure 16: An isosurface of the mass density distribution for smoke plume computed with
a Large Eddy Simulation.

Figure 17: Baseline battlefield plume definition used by Hoock. The centerline is defined
with the height equal to downwind direction raised to a power. The concentration in the
plume is a Gaussian of distance from the centerline.

Because of the length scale problem in computing direct solutions, alternative ap-
proaches have been developed for modeling turbulence. In particular, statistical methods
and dimensional arguments have been used [38]. For example a flow can be viewed as
being composed of eddies of various lengths – ranging from a characteristic length in the
problem, to the length scale of viscous dissipation. One model is that energy is transferred
from the largest scale eddies to the smallest, without loss. This process is referred to as
“the energy cascade.” Using statistical arguments for the special case of homogeneous
turbulence, the energy of eddies in this cascade scale according to the wavenumber of the
eddy raised to a power. This power law can be used to determine a realistic spectrum of
spatial and temporal variations to simulate homogeneous turbulence.

A complete example of successfully using the energy cascade approach is given by
Hoock [20] to a Gaussian plume which has an overall shape (centerline and width) shown
in Fig. 17. The basic plume centerline is modeled with the plume height equal to downwind
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distance raised to a power – with the coefficient and power based on experimental observa-
tions of various plumes. The basic centerline is then perturbed according to a model of wind
conditions. The basic particulate concentration of the plume is a Gaussian distribution from
the centerline. The width of the distribution increases along the centerline, and depends
on an estimated rate of entrainment of ambient fluid into the plume. The base distribution
is then perturbed by sinosoidal fluctuations in concentration. These fluctuations simulate
turbulent eddies of various length scales. The amplitude of these fluctuations is inversely
related to their spatial frequency to emulate the observed “energy cascade” in turbulent
flows.

In computer graphics, Stam and Fiume [37] have applied the approach of using a power
law relationship between energy and length scales to compute realistic looking particulate
distributions.

Of course, as in the case of electromagnetic solutions for scattering, being able to solve
a fluid mechanics problem doesn’t solve the input problem for participating media. If a
fluids model is to be used, the appropriate input for that computation has to be found – i.e.
initial and boundary conditions for the the velocities and pressures in the field.

4.2 Measured Density Distributions

Because of the difficulties in finding solutions for the fluid flows that frequently of interest
in rendering, an alternative is to use measured distributions. As illustrated in the case of
battle field plumes, experimental data can be found to model at least the overall spatial
distribution of the participating media.

Numerous studies in the fire science literature are available giving the mass distribution
of smoke particles as crude (i.e. not well spatially resolved) functions of height and time
[8], or the optical thickness in an enclosure as a function of height and time [11].

Liou [30] gives data for overall size distribution for atmospheric clouds, as well as data
for the number density and composition droplet/crystal in the cloud. For example the size
distribution of cumulus clouds per km2 surface area observed from satellite photographs is
given. This type of bulk data coupled with mathematical functions which mimic observed
cloud shape, as presented by Gardner [15], could be used to rendering physically realistic
clouds.

There is no one combined source for data on spatial distributions of participating media.
However, both particle characteristics and spatial distributions for particular types of flows
can be assembled for a particular problem from data presented in journals such as the The
Journal of Geophysical Research(e.g. [13]), Atmospheric Environment (e.g. [40]), and
Journal of Aerosol Science (e.g. [29]).

4.3 Fire

The complexity of computing the spatial distribution of emitting, absorbing and scattering
media is compounded in the case of fires. Not only are most fires turbulent, but the chemistry
of the combustion process must be included in any type of physical simulation.
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Figure 18: The LOWTRAN code is typically used to compute the effect of the atmosphere
on individual, kilometers long, lines of sight.

To an even greater extent, input for accurate models of fires needs to be obtained from
observations and measurement. In computer graphics, this approach has been used by
Inagake [22], using descriptions of flame structure from Gaydon and Wolfard [16], and
Faraday [12].

5 Existing Codes – LOWTRAN

Because attenuation and scattering through the atmosphere is so important in remote sensing
applications, there is an extensive body of literature on this topic. For computation, many
of the models for the transport of radiation have been included in the program LOWTRAN
[25]. LOWTRAN is one of the most-used large scale scientific programs, and is cited
widely in the remote sensing literature. Typical, kilometers long, lines of sight for which
LOWTRAN is used to compute transmittance and radiance through the atmosphere are
shown in Fig. 18.

LOWTRAN was developed over decades at the Air Force Geophysics Laboratory
(AFGL) to include a wide range of phenomena. A variety of model atmospheres can be
selected, e.g. tropical, subartic summer, etc. Many different types of aerosols can be
included such as fog, volcanic dust and typical desert aerosols. Clouds of different types
can be specified. Different models for rain can be used. The various models used for
the properties of various atmospheric components are detailed in a long series of technical
reports from AFGL.

The name “LOWTRAN” comes from the relatively low spectral sampling for many
atmospheric applications. The sampling is at 5 cm�1, which is a low rate at the far infrared
(wavenumber 20 cm�1 at � of 500 �m). In the visible range (wave numbers on the order
of 20,000 cm�1), it is a relatively high sampling rate for graphics researchers accustomed
to sampling 3 wavelengths.

LOWTRAN covers many phenomena and wavelengths (into the ultraviolet and out into
the infrared) which are not of interest in visible image synthesis. And, as a FORTRAN
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program which has evolved over many years, the code itself is unwieldy to work with.
However, for building a renderer for atmospheric effects, the LOWTRAN documentation
is a good starting point for understanding the important effects to model,and the LOWTRAN
code could be used to check the accuracy of line intergration of a visible image renderer.

6 Summary

For most problems of interest in rendering, it is essentially impossible to obtain completely
accurate input data for the properties, emission and spatial distribution of participating
media. While there are detailed analytical solutions, such as the Mie scattering theory,
for some aspects of the problem, these solutions require restrictive assumptions and input
data that may also be difficult to obtain. Obtaining a physically accurate set of input data
requires using a mix of analysis and measured data that are appropriate for the particular
rendering problem at hand.

In the introduction to A First Course in Turbulence[38], Tennekes and Lumley write:
“In turbulence the equations do not give the entire story. One must be willing to use (and

capable of using) simple physical concepts based on experience to bridge the gap between
the equations and the actual flows. We do not want to imply that the equations are of little
use; we merely want to make it unmistakably clear that turbulence needs spirited inventors
just as badly as dedicated analysts.”

Similarly, for the entire problem of modeling input for participating media, invention
based on the simple physical concepts is required as well as detailed mathematical analysis.
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1 Introduction

Monte Carlo methods refer to any method that uses averages of random computations to get an
approximate answer to a problem. In computer graphics Monte Carlo techniques can be used to
perform radiosity calculations and can be used in distribution ray tracing for effects such as soft
shadows and motion blur. These notes serve as an introduction to the tools of Monte Carlo, but a
broader treatment on Monte Carlo methods for rendering can be found in Glassner’s recent two-
volume book [14].

In these notes I will cover the basics of bothMonte Carlo simulation, where a physical system is
modeled,Monte Carlo integration, where random numbers are used to approximate integrals, and
Quasi-Monte Carlo integration, where non-random numbers are used. This discussion will cover
the general techniques, and will use global illumination problems as examples.

One appeal of using Monte Carlo methods is that they are easy to design and use. However, it is
not so easy to design agoodMonte Carlo method, where the computation can be completed to the
desired accuracy relatively quickly. Here both cleverness and some analytic skills are required. For-
tunately, the analytic skills are fairly narrow in scope, so many of them can be covered in this short
tutorial. A more formal discussion of Monte Carlo simulation can be found in the neutron trans-
port literature (e.g. [53]) and an extremely current survey of Monte Carlo integration for practical
applications can be found in the survey article by Spanier and Maize [54].

2 Background and Terminology

Before getting to the specifics of Monte Carlo techniques, we need several definitions, the most
important of which arecontinuous random variable, probability density function, expected value,
and variance. This section is meant as a review, and those unfamiliar with these terms should
consult an elementary probability theory book (particularly the sections on continuous, rather than
discrete, random variables).

Loosely speaking, acontinuous random variablex is a scalar or vector quantity that ‘randomly’
takes on some value from a continuous spaceS, and the behavior ofx is entirely described by the
distribution of values it takes. This distribution of values can be quantitatively described by the
probability density function, p, associated withx (the relationship is denotedx � p). If x ranges
over a spaceS, then the probability thatx will take on a value in some regionSi � S is given by
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the integral:

Prob(x 2 Si) =
Z
Si

p(x)d� (p : S !R1): (1)

HereProb(event) is the probability thateventis true, so the integral is the probability thatx takes
on a value in the regionSi. The measure� is the measure on our probability space. In graphicsS
is often an area (d� = dA = dxdy), or a set of directions (points on a unit sphere:d� = d! =
sin �d�d�). Loosely speaking, the probability density function describes the relative likelihood of
a random variable taking a certain value; ifp(x1) = 6:0 andp(x2) = 3:0, then a random variable
with densityp is twice as likely to have a value “near”x1 than it it to have a value nearx2. The
densityp has two characteristics:

p(x) � 0 (Probability is nonnegative); (2)

Z
S
p(x)d� = 1 (Prob(x 2 S) = 1): (3)

As an example, thecanonicalrandom variable� takes on values between zero (inclusive) and one
(non-inclusive) with uniform probability (hereuniform simply means each value for� is equally
likely). This implies that:

f(�) =

(
1 if 0 � � � 1
0 otherwise

The space over which� is defined is simply the interval[0; 1). The probability that� takes on a
value in a certain interval[a; b] 2 [0; 1) is:

Prob(a � � � b) =

Z b

a
1dx = b� a:

As an example, a two dimensional random variable� is a uniformly distributed random variable
on a disk of radiusR. Hereuniformlymeans uniform with respect to area, e.g., the way a bad dart
player’s hits would be distributed on a dart board. Since it is uniform, we know thatp(�) is some
constant. From Equation 3, and the fact that area is the appropriate measure, we can deduce that
p(�) = 1=(�R2). This means that the probability that� is in a certain subsetS1 of the disk is just:

Prob(� 2 S1) =
Z
S1

1

�R2
dA:

This is all very abstract. To actually use this information we need the integral in a form we can
evaluate. SupposeSi is the portion of the disk closer to the center than the perimeter. If we convert
to polar coordinates, then� is represented as a(r; �) pair, andS1 is wherer < R=2. Note that just
because� is uniform does not imply thattheta or r are necessarily uniform (in fact,theta is, and
r is not unifrom). The differential areadA becomesr dr d�. This leads to:

Prob(r <
R

2
) =

Z 2�

0

Z R

2

0

1

�R2
r dr d� = 0:25:

The average value that a real functionf of a one dimensional random variable will take on is
called itsexpected value, E(f(x)):

E(f(x)) =

Z
S
f(x)p(x)d�:

9-2



The expected value of a one dimensional random variable can be calculated by lettingf(x) = x.
The expected value has a surprising and useful property: the expected value of the sum of two
random variables is the sum of the expected values of those variables:

E(x+ y) = E(x) +E(y);

for random variablesx andy. Since functions of random variables are themselves random variables,
this linearity of expectation applies to them as well:

E(f(x) + g(y)) = E(f(x)) +E(g(y)):

An obvious question is whether this property hold if the random variables being summed are cor-
related (variables that are not correlated are calledindepedent. This linearity property in fact does
holdwhether or notthe variables are independent! Since the sum of two random variables is itself a
random variable, this principle generalizes. As an example of expectation, consider random points
on the disk of radiusR. What is the expected distancer from the center of the disk of radiusR?

E(r) =

Z 2�

0

Z R

0

�
1

�R2
r

�
r dr d� =

2R

3
:

Thevariance, var(x), of a one dimensional random variable is the expected value of the square
of the difference betweenx andE(x):

var(x) = E([x�E(x)]2):

Some algebraic manipulation can give the non-obvious expression:

var(x) == E(x2)� [E(x)]2 :

The expressionE([x�E(x)]2) is more useful for thinking intuitively about variance, while the
algebraically equivalent expressionE(x2) � [E(x)]2 is usually convenient for calculations. The
variance of a sum of random variables is the sum of the variancesif the variables are independent.
This summation property of variance is one of the reasons it is frequently used in analysis of prob-
abilistic models. The square root of the variance is called thestandard deviation, �, which gives
some indication of expected absolute deviation from the expected value.

Many problems involve sums of independent random variablesxi, where the variables share
a common densityf . Such variables are said to beindependent identically distributedrandom
variables. When the sum is divided by the number of variables, we get an estimate ofE(x):

E(x) � 1

N

NX
i=1

xi:

AsN increases, the variance of this estimate decreases. We wantn to be large enough that we have
confidence that the estimate is “close enough”. However, there are no sure things in Monte Carlo;
we just gain statistical confidence that our estimate is good. To be sure, we would have to have
n =1. This confidence is expressed byLaw of Large Numbers:

Prob

"
E(x) = lim

N!1

1

N

NX
i=1

xi

#
= 1:
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3 Monte Carlo Simulation

For some physical processes, we have statistical models of behavior at a microscopic level from
which we attempt to derive an analytic model of macroscopic behavior. For example, we often think
of a luminaire (a light emitting object) as emitting a very large number of random photons (really
pseudo-photons that obey geometric, rather than physical, optics) with certain probability density
functions controlling the wavelength and direction of the photons. From this a physicist might use
statistics to derive an analytic model to predict how the luminaire distributes its energy in terms of
the directional properties of the probability density functions. However, if we are not interested in
forming a general model, but instead want to know about the behavior of a particular luminaire in
a particular environment, we can just numerically simulate the behavior of the luminaire. To do
this we computationally “emit” photons from the luminaire and keep track of where the photons
go. This simple method is from a family of techniques calledMonte Carlo Simulationand can be a
very easy, though often slow, way to numerically solve physics problems. In this section simulation
techniques are discussed, and methods for improving their efficiency are presented.

The first thing that you might try in generating a highly realistic image is to actually track
simulated photons until they hit some computational camera plane or were absorbed. This would
be very inefficient, but would certainly produce a correct image, although not necessarily while you
were alive. In practice, very few Monte Carlo simulations model the full physical process. Instead,
an analogprocess is found that is easier to simulate, but retains all theimportantbehavior of the
original physical process. One of the difficult parts of finding an analog process is deciding what
effects are important.

An analog process that is almost always employed in graphics is to replace photons with set
wavelengths with power carrying beams that have values across the entire spectrum. If photons are
retained as an aspect of the model, then an obvious analog process is one where photons whose
wavelengths are outside of the region of spectral sensitivity of the film do not exist.

Several researchers (e.g. [3]) have used Monte Carlo simulation of a simple analog of optics,
where only Lambertian and specular surfaces are used. A lambertian surface is one with several
simple properties. First, its radiance at any wavelength does not vary with viewing angle. Second,
this radiance varies linearly according to the total incident power per unit area and the reflectance
of the surface. Quantitatively this can be written:

L(�) =
�d(�)�incoming(�)

�A
(4)

whereL(�) is the spectral radiance at wavelength�, �d(�) is the reflectance of the surface at�,
�incoming(�) is the incident power per unit wavelength at�, andA is the area of the surface being
illuminated. What makes the Lambertian surface attractive is that if we can figure out how much
light is hitting it (irrespective of where the light comes from), then we know its radiance for all
viewing directions. Note that�d is the reflectance, not the BRDF, of the surface. The BRDF is a
constant function with value�d=�.

As an example of an analog process, theillumination ray tracingof Arvo [3] assumed photons
traveled as bundles with a spectral distribution. He further assumed that these bundles were attenu-
ated when reflecting from a specular surface. Like almost all graphics programs, his also assumed
that the optical properties of the scene were constant within the time interval the picture represented,
and that this time interval was very large relative to the speed it takes light to travel any distances in
the scene. This last assumption, usually taken for granted, makes it possible to treat light as moving
instantaneously within our programs. Finally, Arvo assumed that diffuse surfaces can be broken
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into zones whose radiances are described by the power incident to them (i.e. they obey Equation 4
and are constant within a small neigborhood defined by the illumination pixel).

These assumptions allowed Arvo to trace power-carrying rays and mark each zone with the
accumulated power. Once the simulation was over, the radiance of each zone could be calculated
using Equation 4. Although we often think of this as being a brute force physical simulation, it is
important to remember that this is really the simulation of an analog process where all wavelengths
follow the same paths, and time dependent behavior can be ignored.

The trickiest part of implementing Arvo’s simulation method is tracking the power through the
environment. A natural choice for tracking the power is to use ray tracing. However, it is not so
obvious how many rays to send, or where to send them. This question has been examined in a
fairly sophisticated way in [19], but even for a simple implementation the answer is non-obvious.
The number of rays that must be sent is “enough”. This depends on how much noise is acceptable
in an image, and how small the zones are. In [47] it is argued that the number of rays should
be linearly proportional to the number of zones, so doubling the number of zones implies that the
number of rays should also be doubled. A visual example of this argument is shown in Figure 1
where an environment with four times as many zones seems to require four times as many rays for
the same level of accuracy as the environment with fewer zones1. The other detail, where the rays
should be sent, is easier. The rays should be generated randomly with the same distribution as the
emitted power of the luminaire. Generating rays sets with such directional distributions is discussed
in Appendix A. The rays should also be sent from points distributed on the surface of the luminaire.
To do this, first choose a random point on the luminaire surface, and then choose a random direction
based on the surface normal at that point.

Arvo’s method can be extended to a radiosity [15] method by letting the Lambertian zones
interreflect light [33, 1, 2, 44]. This is really just a ray tracing variant of the progressive refinement
radiosity method [8]. In this method, reflectance (�d;i) and emitted power (�e;i) of theith zone are
known, and the reflected power (�r;i) (�r;i = �incoming;i) is unknown. If we solve for�r;i, then
we can find�i, the total power coming from theith patch.

Once the total power of each patch is found, it can be converted to radiance using Equation 4.
These radiance values can then be interpolated to form a smooth appearance [9].

We first set our estimate of�i to be�e;i for all i. For each surfacei that has non-zero�e;i,
we can shoot a set ofni energy packets each carrying a power of�ei=ni. When a packet with
power� hits a surfacej, we can add�d;j� for our estimate of�j , and reflect a new energy packet
with power�d;j�. This energy packet will bounce around the environment until it is depleted to a
point where truncation is used. This basic energy packet tracing technique has been used in Heat
Transfer [21, 13, 56], Illumination Engineering [55], and Physics [53, 23].

This method, which I callreflection simulation(see Figure 2), is problematic in that each re-
flection is followed by a ray intersection test to find the next surface hit. The later reflections will
carry a relatively small amount of power, so tracing these later rays is somewhat wasteful in the
sense that we have bad ‘load-balancing’: some rays do more work than others. One solution to this
problem is to use “Russian roulette” and keep all particles with the same power by probabilistically
absorbing them according to the albedo of the surface [5, 37]. Another solution to this problem of
low energy particles is to replace the reflection model with an analog model where light is absorbed
and immediately reemitted (after attenuation by the reflectance) (see Figure 3). A scene where light

1The number of rays sent can be thought of as the number of photons tracked in a certain time interval. The number
of rays will be proportional to the time a “shutter” is open. Once the “exposure” is long enough, the noise will not be
objectionable.
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Figure 1: Noise reduction as the number of energy bundles increases. Note that the number of
bundles needed is approximately inversely related to the surface area of each zone.
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Figure 2: Reflection Simulation. The patch on the floor is a luminaire and emits a “photon” with
12 watts of power. Each reflection damps some of the power and scatters the photon according to
a diffuse (cosine) distribution. On the right is the reflected power from each patch after the photon
leaves the environment. The emitted power is also stored for each patch but is not shown.

is absorbed and reemitted in this way looks similar to a scene where light is reflected, so solving
for the transport in either model will hopefully yield a similar solution. The difference is that now
light may strike one side of a zone and later be reemited on the other side of the zone. This can
give rise to objectional artifacts if the zone is partially in a dark area and partially in a light area2

(e.g. goes under a door between the outside and a dark room). To solve for this absorb and reemit
model, we can again send power in bundles from light sources. When a bundle carrying power�
hits a surfacej, the absorbed power that will later be reemitted by surfacej can be scaled by�d;j�.
After each light source emits its power, reflective surfaces can, in turn, emit their absorbed power.
The efficiency of this method is best if surfaces with the greatest amount of power send their power
first.

The reason that we have the freedom to let the zones emit in any order we choose is that our
analog has lost its time dependence. We are lucky the speed of light is so fast! There are two points
which are crucial to the implementation of this progressive refinement method. The first is that
the number of rays emitted from a certain zone is proportional to the power being emitted in that
iteration (each ray carries approximately the same amount of power). The other is that, unlike in
[8], the zone with the most power is not searched for, or the time complexity of the method will
increase fromO(N logN) toO(N2), whereN is the number of zones [47]. This problem can be
avoided if a heap or similar structure is used to make the search for maximumO(logN) rather than
O(N). A more detailed discussion of the implementation of Monte Carlo radiosity can be found in
[46].

Recently, Neumann et al. have compared various Monte Carlo strategies for radiosity on prede-
fined meshes [36]. Interestingly, the straightforward particle tracing with Russian roulette converges
faster inm their tests than “absorb and reemit”, and that “absorb and reemit” can be improved by
viewing it in a linear algebra context.

The biggest problem with these Monte Carlo radiosity methods is that small zones will be
undersampled and will have large errors, or enough rays will be sent that the large area zones

2Thanks to Dani Lischinski for pointing this out. Earlier versions of this document said that absorb and reemit was
asymptotically equivalent to the photon tracking model.

9-7



reflectance = 1/2

Each ray carries 4

0,0 0,0 0,0

0,0

0,0

0,0

0,0

0,0
0,0

0,0

0,0

0,0

0,0
0,0

0,0
0,0

0,0

0,0

0,0

0,0

0,0

0,0
0,0

2,2 4,4

2,2 2,2

reflectance = 1/2

Each ray carries 4

0,0 0,0 0,0

0,0

0,0

0,0

0,0

0,0
0,0

0,0

0,0

0,0

0,0
0,0

0,0
0,0

0,0

0,0

0,0

0,0

0,0

0,0
0,0

2,2

2,2 2,2

36,0

4,0

reflectance = 3/4

reflectance = 3/4

39,3

Figure 3: Absorb and reemit. The patch on the floor has 36 units of power that it has not distributed.
Each patch has two numbers, the total reflected power (left of pair), and the power that still needs
to be sent (right of pair).
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Figure 4: Zones with small areas have their radiance recalculated more accurately in a postprocess.
The arrows indicate the direction of rays sent into the environment to find energy sources and thus
flow against the direction of light transport.

are oversampled. This is only a problem in scenes with a large range of zone areas, but this is not
uncommon. One way to get around this problem (that I have not yet tried) is to do a “gather” on
small zones in the scene after the first radiosity solution is done. The radiance of the zone is simply
its reflectance times the average radiance “seen” by the gather rays provided they are sent in a cosine
distribution. This idea is illustrated in Figure 4.

This simple simulation method could also be used for diffuse transmission, in a manner similar
to that of Rushmeier and Torrance [41]. Some of the simulation techniques discussed earlier can be
extended to non-diffuse reflection types. The most important application is to scenes that include
specular surfaces, but glossy surfaces are sometimes desirable too.

The simplest method of including specular reflection in a radiosity calculation is theimage
method[59, 41]. In the image method, a specular surface is replaced by a hole into a virtual en-
vironment. This method works only for planar mirrors, but performs very well for environments
that have one important specular surface like a mirror or highly polished floor. Malley extended his
Monte Carlo power transport method to account for zonal transport by specular surfaces [33]. He
did this by allowing power carrying rays to reflect off specular surfaces as shown in Figure 5. The
colors of specular surfaces can be determined in the viewing phase by standard ray tracing. Sil-
lion and Puech used a similar technique to account for specular reflection, and included subdivision
strategies for sampling more heavily where ray paths diverged [52].

Any non-diffuse reflectors can have zonal values, as long as each incoming power packet adds
to a powerdistribution functionthat will be reemitted. In the viewing stage, this distribution can
be queried with results depending on viewer position. The distribution functions could be stored
in a Hemicube as done by Immel et al. [22], as spherical harmonics as done in [6, 51], or in
hemispherical tables as done in [16, 42, 48]. These latter methods use Monte Carlo by generating
outgoing power rays according to the shape of the unemitted power function as shown in Figure 6.
My experience has been that non-diffuse radiosity does not work well for near mirrors because
more zones are needed (the surfaces have detail visible in them) and each zone needs a larger table
to represent the complicated outgoing power distribution.
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Figure 5: Monte Carlo emission of energy with and without specular reflection. On the left, energy
is transported directly between diffuse zones. On the right, the vertical wall is a mirror, and light
that hits it is reflected until it hits a diffuse surface.

+ =

absorb re−emit

Figure 6: Absorb and re-emit strategy requires directional distribution at each zone and a way to
directionally shoot power to directions where the accumulated distribution is large.
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4 Monte Carlo Integration

In this section the basic Monte Carlo solution methods for definite integrals are outlined. These
techniques are then straightforwardly applied to certain integral problems. All of the basic material
of this section is also covered in several of the classic Monte Carlo texts. This section differs by
being geared toward classes of problems that crop up in Computer Graphics. Readers interested
in a broader treatment of Monte Carlo techniques should consult one of the classic Monte Carlo
texts [18, 50, 17, 66].

From Section 2 we saw that for a functionf and a random variablex � p, we can approximate
the expected value off(x) by a sum:

E(f(x)) =

Z
x2S

f(x)p(x)d� � 1

N

NX
i=1

f(xi): (5)

Because the expected value can be expressed as an integral, the integral is also approximated by the
sum. The form of Equation 5 is a bit awkward; we would usually like to approximate an integral of
a single functiong rather than a productfp. We can get around this by substitutingg = fp as the
integrand: Z

x2S
g(x)d� � 1

N

NX
i=1

g(xi)

p(xi)
: (6)

For this formula to be valid,p must be positive whereg is nonzero.
So to get a good estimate, we want as many samples as possible, and we want theg=p to have

a low variance (g andp should have a similar shape). Choosingp intelligently is called importance
sampling, because ifp is large whereg is large, there will be more samples in important regions.
Equation 5 also shows the fundamental problem with Monte Carlo integration:diminishing return.
Because the variance of the estimate is proportional to1=N , the standard deviation is proportional
to 1=

p
N . Since the error in the estimate behaves similarly to the standard deviation, we will need

to quadrupleN to halve the error.
Another way to reduce variance is to partitionS, the domain of the integral, into several smaller

domainsSi, and evaluate the integral as a sum of integrals over theSi. This is called stratified
sampling. Normally only one sample is taken in eachSi (with densitypi), and in this case the
variance of the estimate is:

var

 
NX
i=1

g(xi)

pi(xi)

!
=

NX
i=1

var

�
g(xi)

pi(xi)

�
: (7)

It can be shown that the variance of stratified sampling is never higher than unstratified if all strata
have equal measure: Z

Si

p(x)d� =
1

N

Z
S
p(x)d�:

The most common example of stratified sampling in graphics is jittering for pixel sampling [12].
As an example of the Monte Carlo solution of an integralI setg(x) to bex over the interval (0,

4):

I =

Z 4

0
x dx = 8: (8)

The great impact of the shape of the functionp on the variance of theN sample estimates is shown
in Table 1. Note that the variance is lessened when the shape ofp is similar to the shape ofg. The
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method sampling function variance samples needed for
standard error of 0.008

importance (6� x)=(16) 56:8N�1 887,500
importance 1=4 21:3N�1 332,812
importance (x+ 2)=16 6:3N�1 98,437
importance x=8 0 1
stratified 1/4 21:3N�3 70

Table 1: Variance for Monte Carlo Estimate of
R 4
0 x dx

variance drops to zero ifp = g=I, butI is not usually known or we would not have to resort to Monte
Carlo. One important principle illustrated in Table 1 is that stratified sampling is oftenfar superior
to importance sampling. Although the variance for this stratification onI is inversely proportional
to the cube of the number of samples, there is no general result for the behavior of variance under
stratification. There are some functions where stratification does no good. An example is a white
noise function, where the variance is constant for all regions. On the other hand, most functions will
benefit from stratified sampling because the variance in each subcell will usually be smaller than
the variance of the entire domain.

4.1 Quasi-Monte Carlo Integration

Although distribution ray tracing is usually phrased as an application of Equation 6, many re-
searchers replace the�i with more evenly distributed (quasi-random) samples (e.g. [11, 34]). This
approach can be shown to be sound by analyzing decreasing error in terms of some discrepancy
measure [67, 65, 34, 43] rather than in terms of variance. However, it is often convenient to develop
a sampling strategy using variance analysis on random samples, and then to turn around and use
non-random, but equidistributed samples in an implementation. This approach is almost certainly
correct, but its justification and implications have yet to be explained.

For example, when evaluating a one dimensional integral on[0; 1] we could use a set ofN
uniformly random sample points(x1; x2; � � � ; xN ) on [0; 1] to get an approximation:

Z 1

0
f(x)dx � 1

N

NX
i=1

f(xi):

Interestingly, we can replace the points(x1; x2; � � � ; xN )with a set of non-random points(y1; y2; � � � ; yN ),
and the approximation will still work. If the points are too regular, then we will have aliasing, but
having correlation between the points (e.g. using one dimension Poisson disk sampling), does not
invalidate the estimate (merely the Monte Carlo argument used to justify the approximation!). In
some sense, this quasi-Monte Carlo method can be thought of as using the equidistributed points to
estimate the height off . This does not fit in with the traditional quadrature approaches to numerical
integration found in most numerical analysis texts (because these texts focus on one-dimensional
problems), but is no less intuitive once you are used to the idea.

4.2 Multidimensional Monte Carlo Integration

Applying Equation 6 to multidimensional integrals is straightforward, except that choosing the
multidimensional sampling points can be more involved than in the one dimensional case. More
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specifics on this can be found in Appendix A.
As an example in two dimensions, suppose we want to integrate some functionf on the origin

centered square[�1; 1]2. This can be written down as a integral over a single two dimensional
variablex:

I =

Z
[�1;1]2

f(x)dA:

Applying Equation 6 to this gives us:

I � 1

N

NX
i=1

f(xi)

p(xi)
;

where eachxi is a two dimensional point distributed according to a two dimensional densityp. We
can convert to more explicit Cartesian coordinates and have a form we are probably more comfort-
able with:

I =

Z 1

y=�1

Z 1

x=�1
f(x; y)dxdy � 1

N

NX
i=1

f(xi; yi)

p(xi; yi)
:

This is really no different than the form above, except that we see the explicit components ofxi to
be(xi; yi).

If our integral is over the disk of radiusR, nothing really changes, except that the sample points
must be distributed according to some density on the disk. This is why Monte Carlo integration
is relatively easy: once the sample points are chosen, the application of the formula is always the
same.

For a more complicated example, we look at the four dimensional integral for the form factor
between two surfacesS1 andS2:

F12 =
1

A1

Z
x12S1

Z
x22S2

g(x1;x2) cos �1 cos �2dA1dA2

�jjx1 � x2jj2 :

The sampling space is the four dimensional spaceS1 � S2. A four dimensional point in this space
is just an ordered pair(x1;x2), wherex1 is a point onS1 andx2 is a point onS2. The simplest way
to proceed is to choose our four dimensional sample point as a pair of uniformly random points,
one from each surface. The probability density function for this is the constant1=(A1A2), because
A1A2 is the four dimensional volume of the space, and this value just enforces Equation 3. If we
use only one sample we have the estimate:

F12 � A2
g(x1;x2) cos �1 cos �2

�jjx1 � x2jj2 :

A ray would be sent to evaluate the geometry termg. If many samples were taken, we could increase
our accuracy. Notice that the shape of the surfaces was never explicitly used. This formula is valid
whenever we have a method to choose random points from a shape!

4.3 Weighted Averages

We often have integrals that take the form of a strictly positive weighted average of a function:

I =

Z
S
w(x)f(x)d�:
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wherew is a weighting function with unit volume. To solve this by Equation 6, the optimal choice
for the probability function isp(x) = Cw(x)f(x), but as is often pointed out, this choice requires
us to already know the value ofI. Instead, people often either choose uniformp, or setp(x) =
w(x) [11, 38, 31].

An example of a weighted average often used is pixel filtering. The color of a pixelI(i; j) can
be expressed as an integral:

I(i; j) =

Z
S
w(p)L(p)dA: (9)

wherep is a point on the viewport (or filmplane if a camera model is used),L(p) is the radiance
seen through the viewport atp, andS is the non-zero region of the filter functionw.

Rewriting with the assumption that the same origin-centered weighting function is used for
every pixel yields the estimator :

I(i; j) � 1

N

NX
k=1

w(xk; yk)L(i+ 0:5 + xk; j + 0:5 + yk)

p(xk; yk)
: (10)

This assumes a coordinate system where a pixel(i; j) has unit area and is centered at(i+0:5; j+0:5)
as suggested by Heckbert [20].

Once aw is chosen for filtering, implementation is straightforward withp proportional tow
provided thatw is strictly positive (as it must be if negative pixel colors are disallowed). But how
do we choosenon-uniformrandom points? As discussed in Appendix A, sample points can be
chosen uniformly from[0; 1]2 and then a warping transformation can be applied to distribute the
points according tow [50, 43, 31].

For several practical and theoretical reasons [45] we have chosen the width 2 weighting function
that is non-zero on(x; y) 2 [�1; 1]2:

w(x; y) = (1� jxj) (1� jyj) : (11)

We generate random points with density equal tow by applying a transformation to a uniform
random pair(r1; r2) 2 [0; 1]2. The transformed sample point is just(t(r1); t(r2)), where the trans-
formation functiont is:

t(u) =

(
�0:5 +

p
2u if u < 0:5

1:5�p2(1 � u) if u � 0:5

An important detail is that we do not really use uniform(r1; r2), but instead use jittered or an other-
wise better distributed set of points. After warping, we still have a better than random distribution.

Another example of a weighted average is the radiance of a pointx on a Lambertian surface:

L(x) = �d(x)

Z
incoming 0

1

�
L(x;  0) cos �d!0:

WhereL(x;  0) is the incoming radiance seen at pointx coming from direction 0. Again, we
might be more comfortable with the explicit form:

L(x) = �d(x)

Z 2�

�=0

Z �

2

�=0

1

�
L(�; �) cos � sin �d�d�:

The sin � term arises because the measure is solid angle (area on the unit sphere:d! = dA =
sin �d�d�). To solve this we just need to choose a random direction to sample with a distribution
according to the density functioncos �=�. This gives the estimator:

L(x) = �d(x)L(x;  ):
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Figure 7: Random, Jittered, Dart-throwing, Regular.

This makes it easy to figure out the color of the ground in the midwest: it’s the weighted average of
the color of the sky times the reflectance of the ground!

4.4 Multidimensional Quasi-Monte Carlo Integration

Suppose we want to numerically estimate the value of an integralI on [0; 1]2:

I =

Z 1

0

Z 1

0
f(x; y)dxdy:

For pure Monte Carlo we might use a set of uniform random points(xi; yi) 2 [0; 1]2 and estimate
I to be the average off(xi; yi). For stratified sampling we might partition[0; 1]2 into several
equal-area rectangles and take one sample(xi; yi) in each rectangle and again averagef(xi; yi).
Interestingly, we might also use ”Poisson-disk” sampling to generate the points, or even just use
points on a regular grid. No matter which of these point distributions (shown in Figure 7) we use,
the estimate ofI is the average off(xi; yi). Interestingly, only when we use one of the first two
patterns are we doing Monte Carlo integration. With Poission-disk (dart-throwing), the samples are
correlated, and in regular sampling they are deterministic.

As in the one-dimensional case, we can replace the random sample points with any set of sam-
ples that are in some sense uniform, and this is just quasi-Monte carlo integration. There is a rich
literature on this topic, but Mitchell has indicated that the graphics community will not be able to
find many useful answers there, because the patterns that are used in that literature are deterministic,
which causes aliasing in images [35].

4.5 Direct Lighting

In this section the famous direct lighting calculation is discussed. Even if radiosity is used, it can
often be used only for the indirect component and the direct component can be done using the
machinery of this section.
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Figure 8: Definitions for the rendering equations.

The rendering equation can be written down in two basic ways. It can be written down in terms
of all directions visible tox (as in [22]):

L(x;  ) =

Z
incoming 0

fr(x;  ;  
0)L(x;  0) cos �d!0: (12)

wherefr is the BRDF, or it can written down as an integral over all surfaces (as in [25]):

L(x;  ) =

Z
all x0

g(x;x0)fr(x;  ;  
0)L(x0;  0) cos �

dA0 cos �0

kx0 � xk2 : (13)

When Equation 12 is used, we can viewfr(x;  ;  0) cos � as a weighting function and sample
according to it. Because there is some energy absorbed by a surface, this gives us the estimator:

L(x;  ) � R(x;  )L(x; �); (14)

where� is a random direction with density proportional tofr(x;  ;  
0) cos �. The reflectivity term

is simply:

R(x;  ) =

Z
incoming 0

fr(x;  ;  
0) cos �d!:

For an ideal specular surface, the� will always be the ideal reflection direction. For a dielectric,�
can be chosen randomly between reflected and transmitted directions [5], or it can be split into two
integrals as is done in a Whitted-style ray tracer [64]. For a diffuse surface,� will follow a cosine
distribution:p( 0) = cos �=�.

When Equation 13 is used, the sampling takes place over all surfaces in the environment. In
practice, only the direct lighting is calculated, so the integration space becomes all luminaire sur-
faces. This can be split into one integral for each surface [11], or can be viewed as a single sampling
space [31, 49]. To simplify this discussion, we will assume only one luminaire, so the sampling
space is just a single surface. Looking at Equation 13, an ideal estimator for diffuse luminaires
would result if we sampled according to the density:

p(x0) = Cg(x;x0)fr(x;  ;  
0) cos �

cos �0

kx0 � xk2 ;
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Possible scattered rays

Actual scattered ray

Implicit method: if scattered ray hits luminaire
then a bright sample is returned.

Actual scattered ray

Not sensitive to light
emitted from luminaire

luminaire

Shadow ray

Explicit method: shadow ray sent to
luminaire and scattered ray calculates
only indirect lighting.

Figure 9: Implicit and explicit lighting calculation.

where C is a normalization constant. In practice, this isn’t practical because the geometry termg
and the BRDFfr can be very difficult to characterize. Instead, many researchers [12, 25] sample
uniformly within the solid angle subtended by the luminaire, which yields:

p(x0) = C 0
cos �0

kx0 � xk2 : (15)

This can be done for triangular luminaires [4], and for spherical luminaires [27, 61]. If Equation 15
is used to choose points on the luminaire, then radiance can be estimated to be:

L(x;  ) � g(x;x0)fr(x;  ;  
0)L(x0;  0) cos �!; (16)

where! is the total solid angle subtended by the luminaire as seen byx.
We call the use of Equation 12 animplicit direct lighting calculation because any scattered

ray that hits a luminaire will account for light from that luminaire. The use of Equation 13 is an
explicit direct lighting calculation because each luminaire is explicitly queried using shadow rays
(see Figure 9). Which should be used, an implicit or explicit direct lighting calculation? Clearly,
the implicit method must be used for perfect mirrors, because that method implicitly evaluates the
delta function BRDF. For a diffuse surface, the explicit method is usually used for direct lighting,
and the implicit method is used only for indirect lighting [25, 63, 31]. To decide which method to
use, variance should be analyzed, but the general rule is that specular surfaces should be dealt with
using the implicit calculation and diffuse surfaces are treated explicitly.

If indirect lighting is to be added, then the surfaces that use the explicit direct lighting calculation
can calculate indirect lighting implicitly with a scattered reflection ray [25]. This method, called
path tracing, just recursively applies the direct lighting calculation and adds indirect lighting. If you
implement this, be sure not to double count the indirect lighting!

5 Hybrid Methods

Many methods use some combination of view-dependent and view-independent methods. There are
three basic approaches that have been used:

1. Generate a radiosity solution and view with ray tracing.
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Figure 10: Combined, indirect, and direct lighting. Note that the the sharp shading changes are in
the direct component
.

2. Generate a radiosity solution and use only for indirect lighting. Use ray tracing for direct
lighting.

3. Generate a radiosity solution on alow resolutionenvironment and use this in the viewing
phase.

In method 1 the ray tracing is really just to accurately capture specular effects [59] and the
radiosity phase my or may not include specular transport [33, 52] or directional diffuse transport [42,
48, 51]. Any problems with the meshing in high gradient areas will be very obvious in method 1,
so some form of discontinuity meshing should be used [32].

In method 2 the fine detail caused by shadows (see Figure 10) is handled in the direct phase
and the indirect lighting is handled by some precomputed values [44, 7, 29]. Ward’s Radiance
program [63, 62] is in the second family although the indirect information is calculated on the fly
and cached, and the mesh is implicit.

In method 3, a zonal solution is carried out on a low-resolution version of the scene, and this is
used as sources for gather phases at each pixel [40, 39, 28]. This in some sense is a generalization
of the patch and elements approach [10]. The application of this technique and brute-force path
tracing [25] is shown in Figure 11. The Rushmeier method ran eight times faster because it did not
have to recursively fire rays. On complex scenes this advantage will only grow.

I am a fan of method 3 for many applications. I used to use method 2 (see [44]) but I found it
cumbersome to have to mesh all diffuse objects. The beauty of method 3 is that it works even if the
high resolution environment is an on-demand procedural model, it is easy to code, and that there
are no smoothing issues. The radiosity solution does not have to look good! However, there are a
number of open questions related to method 3:

� How should directional diffuse surfaces be handled?

� How should nearly specular surfaces be handled?

� How should caustics be handled?

� Should a hierarchy of various low-resolution environments be used?

� How should the low-resolution environment be created?
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Figure 11: Left: Low-resolution radiosity solution. Middle: Rushmeier solution. Right: Path
tracing.

6 Conclusion

I hope that this tutorial has revealed the elegance and simplicity of Monte Carlo methods. This ele-
gance and simplicity allow the modeling and solution of many problems with very few assumptions.
However, these benefits come with the price of long execution times. If you need speed, use other
techniques, or supplement Monte Carlo techniques with other methods. A good example of this
combined strategy is Ward’sRadianceprogram described in the conference procedings [62].

Since these notes first appeared at SIGGRAPH ’94, there has been much work in Monte Carlo
rendering. Those that want to really delve into the subject should consult the dissertations of Eric
Lafortune, Eric Veach, or Kurt Zimmerman. There are several others that have been written in the
last several years but I haven’t yet read them. I hope to keep up-to-date pointers on my own web
page. Summarizing the big developments of late that are not treated well in the body of these notes:

Metropolis Algorithm . This algorithm [58] operates in path space and attempts to create a set
of light transport paths that carry equal power density to the camera. It is a real bear to wrap your
mind around, but is a really neat idea. I am working hard trying to do my own implementation of
this and it is tough! To understand this algorithm, you have to really “dot your i’s” on issues of
measure and density. A good place to start before you read the Metropolis paper is the bidirectional
path tracing work of Lafortune [30] and Veach [57].

Density Estimation. This algorithm [60] does a photon tracing phase and stores all interactions
between photons and surfaces. On diffuse surfaces it looks at the pattern of photon hits and tries
to infer (estimate) the continuous pattern of light (density). This algorithm is geared toward view-
independent solutions of semi-complex diffuse scenes.

Photon Map. This algorithm [24] is similar to density estimation, except that photon positions
and incident directions are used. This means that more storage is used but non-diffuse effects
can be accounted for. This method can also be applied to participating media (se SIGGRAPH 98
proceedings).

When designing new Monte Carlo methods, we usually think in terms of variance reduction.
Work by Arvo and Kirk [5, 26] has detailed that this can be a non-trivial and sometimes counter
intuitive process. To add to the confusion, we usually use quasi-random sampling, so the variance
calculations are only an approximation. In the end I find that developing a theory using straight
Monte Carlo assumptions, and then adding to it using intuition works the best for me. The most
common heuristic I use is that every sample should do about the same amount of work. This is
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intuitively related to importance sampling, because the way to come close to this is to try to give
every sample the same weight (load balancing).

The real key to a successful Monte Carlo method is the design of the probability density func-
tions and stratification strategies used to generate the samples. This is where your efforts should be
concentrated. There is a tendency to think that your work is done (and the computer’s starts!) once
you have chosen to use a Monte Carlo method, but the very freedom to choose any density function
dooms us to look for abetterchoice!
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A Generating Random Numbers With Non-Uniform Densities

We often want to generate sets of random or pseudorandom points on the unit square for applications
such as distribution ray tracing. There are several methods for doing this such as jittering and
Poisson disk sampling. These methods give us a set ofN reasonably equidistributed points on the
unit square:(u1; v1) through(uN ; vN ).

Sometimes, our sampling space may not be square (e.g. a circular lens), or may not be uniform
(e.g. a filter function centered on a pixel). It would be nice if we could write a mathematical
transformation that would take our equidistributed points(ui; vi) as input, and output a set of points
in our desired sampling space with our desired density. For example, to sample a camera lens, the
transformation would take(ui; vi) and output(ri; �i) such that the new points were approximately
equidistributed on the disk of the lens.

If the density is a one dimensionalf(x) defined over the intervalx 2 [xmin; xmax], then we can
generate random numbers�i that have densityf from a set of uniform random numbers�i, where
�i 2 [0; 1]. To do this we need the cumulative probability distribution functionP (x):

Prob(� < x) = P (x) =

Z x

xmin

f(x0)d� (17)

To get�i we simply transform�i:
�i = P�1(�i) (18)

whereP�1 is the inverse ofP . If P is not analytically invertible then numerical methods will suffice
because an inverse exists for all valid probability distribution functions.

For example, to choose random pointsxi that have the densityp(x) = 3x2=2 on [�1; 1], we see
thatP (x) = (x3+1)=2, andP�1(x) = 3

p
2x� 1, so we can “warp” a set of canonical random num-

bers(�1; � � � ; �N ) to the properly distributed numbers(x1; � � � ; xN ) = ( 3
p
2�1 � 1; � � � ; 3

p
2�N � 1).

Of course, this same warping function can be used to transform “uniform” Poisson disk samples
into nicely distributed samples with the desired density.
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If we have a random variable� = (�x; �y) with two dimensional density(x; y) defined on
[xmin; xmax]� [ymin; ymax] then we need the two dimensional distribution function:

Prob(�x < x and�y < y) = F (x; y) =

Z y

ymin

Z x

xmin

f(x0; y0)d�(x0; y0)

We first choose anxi using the marginal distributionF (x; ymax), and then chooseyi according to
F (xi; y)=F (xi; ymax). If f(x; y) is separable (expressible asg(x)h(y)), then the one dimensional
techniques can be used on each dimension.

For example, suppose we are sampling uniformly from the disk of radiusR, so p(r; �) =
1=(�R2). The two dimensional distribution function is:

Prob(r < r0� < �0) = F (r0; �0) =

Z �0

0

Z r0

0

rdrd�

�R2
=

�r2

2�R2

This means that a canonical pair(�1; �2) can be transformed to a uniform random point on the disk:
(r; �) = (R

p
�1; 2��2).

To choose random points on a triangle defined by verticesp0, p1, andp2, a more complicated
analysis leads to the transformationu = 1 �p1� �1, v = (1� u)�2, and the random pointp will
is:

p = p0 + u(p1 � p0) + v(p2 � p0):

To choose reflected ray directions for zonal calculations or distributed ray tracing, we can think
of the problem as choosing points on the unit sphere or hemisphere (since each ray direction can
be expressed as a point on the sphere). For example, suppose that we want to choose rays according
to the density:

p(�; �) =
n+ 1

2�
cosn � (19)

Wheren is a Phong-like exponent,� is the angle from the surface normal and� 2 [0; �=2] (is on
the upper hemisphere) and� is the azimuthal angle (� 2 [0; 2�]). The distribution function is:

P (�; �) =

Z �

0

Z �

0
p(�0; �0) sin �0d�0d�0 (20)

The cos �0 term arises because on the sphered! = cos �d�d�. When the marginal densities are
found,p (as expected) is separable and we find that a(�1; �2) pair of canonical random numbers can
be transformed to a direction by:

(�; �) = (arccos((1� r1)
1

n+1 ); 2�r2)

One nice thing about this method is that a set of jittered points on the unit square can be easily
transformed to a set of jittered points on the hemisphere with a distribution of Equation 19. Ifn is
set to1 then we have a diffuse distribution needed for a Monte Carlo zonal method.

For a zonal or ray tracing application, we choose a scattered ray with respect to some unit normal
vector ~N (as opposed to thez axis). To do this we can first convert the angles to a unit vectora:

~a = (cos� sin �; sin� sin �; cos �)

We can then transform~a to be an~a0 with respect to by multiplying ~a by a rotation matrixR
(~a0 = R~a). This rotation matrix is simple to write down:

R =

2
64 ux vx wx
uy vy wy
uz vz wz

3
75
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where~u = (ux; uy; uz), ~v = (vx; vy; vz), ~w = (wx; wy; wz), form a basis (an orthonormal set of
unit vectors where~u = ~v � ~w, ~v = ~w � ~u, and~w = ~u� ~v) with the constraint that~w is aligned
with ~N:

~w =
~N

j~Nj
To get~u and~v, we need to find a vector~t that is not collinear with~w. To do this simply set~t equal
to ~w and change the smallest magnitude component of~t to one. The~u and~v follow easily:

~u =
~t� ~w

j~t� ~wj
~v = ~w� ~u

As an efficiency improvement, you can avoid taking trigonometric functions of inverse trigonomet-
ric functions (e.g.cos arccos �). For example, whenn = 1 (a diffuse distribution), the vector~a
simplifies to

~a = (cos (2��1)
p
�2; sin (2��1)

p
�2;
p
1� �2)
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[36] László Neumann, Martin Feda, Manfred Kopp, and Werner Purgathofer. The stochastic ray
method for radiosity. InProceedings of the Sixth Eurographics Workshop on Rendering, pages
206–218, June 1995.

[37] S. N. Pattanaik.Computational Methods for Global Illumination and Visualisation of Complex
3D Environments. PhD thesis, Birla Institute of Technology & Science, Computer Science
Department, Pilani, India, February 1993.

[38] Werner Purgathofer. A statistical method for adaptive stochastic sampling.Computers and
Graphics, 11(2):157–162, feb 1987.

[39] Holly Rushmeier, Charles Patterson, and Aravindan Veerasamy. Geometric simplification for
indirect illumination calculations. InProceedings of Graphics Interface ’93, pages 227–236,
Toronto, Ontario, Canada, May 1993. Canadian Information Processing Society.

9-24



[40] Holly E. Rushmeier.Realistic Image Synthesis for Scenes with Radiatively Participating Me-
dia. PhD thesis, Cornell University, May 1988.

[41] Holly E. Rushmeier and Kenneth E. Torrance. Extending the radiosity method to include
specularly reflecting and translucent materials.ACM Transaction on Graphics, 9(1):1–27,
January 1990.

[42] Bertrand Le Saec and Christophe Schlick. A progressive ray-tracing-based radiosity with gen-
eral reflectance functions. InProceedings of the Eurographics Workshop on Photosimulation,
Realism and Physics in Computer Graphics, pages 103–116, June 1990.

[43] P. Shirley. Discrepancy as a quality measure for sample distributions. In Werner Purgathofer,
editor,Eurographics ’91, pages 183–194. North-Holland, September 1991.

[44] Peter Shirley. A ray tracing method for illumination calculation in diffuse-specular scenes. In
Proceedings of Graphics Interface ’90, pages 205–212, May 1990.

[45] Peter Shirley.Physically Based Lighting Calculations for Computer Graphics. PhD thesis,
University of Illinois at Urbana-Champaign, January 1991.

[46] Peter Shirley. Radiosity via ray tracing. In James Arvo, editor,Graphics Gems 2. Academic
Press, New York, NY, 1991.

[47] Peter Shirley. Time complexity of Monte Carlo radiosity. InEurographics ’91, pages 459–466,
September 1991.

[48] Peter Shirley, Kelvin Sung, and William Brown. A ray tracing framework for global illumina-
tion systems. InProceedings of Graphics Interface ’91, pages 117–128, June 1991.

[49] Peter Shirley and Changyaw Wang. Direct lighting by Monte Carlo integration. InProceedings
of the Second Eurographics Workshop on Rendering (Barcelona, May 1991), 1991.

[50] Y. A. Shreider.The Monte Carlo Method. Pergamon Press, New York, N.Y., 1966.

[51] François X. Sillion, James Arvo, Stephen Westin, and Donald Greenberg. A global illumina-
tion algorithm for general reflection distributions.Computer Graphics, 25(4):187–196, July
1991. ACM Siggraph ’91 Conference Proceedings.

[52] François X. Sillion and Claude Puech. A general two-pass method integrating specular and
diffuse reflection.Computer Graphics, 23(3):335–344, July 1989. ACM Siggraph ’89 Con-
ference Proceedings.

[53] Jerome Spanier and Ely M. Gelbard.Monte Carlo Principles and Neutron Transport Problems.
Addison-Wesley, New York, N.Y., 1969.

[54] Jerome Spanier and Earl H. Maize. Quasi-random methods for estimating integrals using
relatively small samples.SIAM Review, 36(1):18–44, March 1994.

[55] Dan Stanger. Monte Carlo procedures in lighting design.Journal of the Illumination Engi-
neering Society, pages 14–25, July 1984.

[56] J. S. Toor and R. Viskanta. A numerical experiment of radiant heat interchange by the Monte
Carlo method.International Journal of Heat and Mass Transfer, 11:883–897, 1968.

9-25



[57] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. InProceedings
of the Fifth Eurographics Workshop on Rendering, pages 147–162, June 1994.

[58] Eric Veach and Leonidas J. Guibas. Metropolis light transport. InSIGGRAPH 97 Conference
Proceedings, pages 65–76. ACM SIGGRAPH, August 1997.

[59] John R. Wallace, Michael F. Cohen, and Donald P. Greenberg. A two-pass solution to the
rendering equation: a synthesis of ray tracing and radiosity methods.Computer Graphics,
21(4):311–320, July 1987. ACM Siggraph ’87 Conference Proceedings.

[60] Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald F. Greenberg. Global illumination
using local linear density estimation.ACM Transactions on Graphics, 16(3):217–259, July
1997.

[61] Changyaw Wang. Physically correct direct lighting for distribution ray tracing. In David Kirk,
editor,Graphics Gems 3. Academic Press, New York, NY, 1992.

[62] Gregory J. Ward. The RADIANCE lighting simulation and rendering system.Computer
Graphics, 28(2):459–472, July 1994. ACM Siggraph ’94 Conference Proceedings.

[63] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution for
diffuse interreflection. In John Dill, editor,Computer Graphics (SIGGRAPH ’88 Proceedings),
volume 22, pages 85–92, August 1988.

[64] T. Whitted. An improved illumination model for shaded display.CACM, 23(6):343–349, June
1980.

[65] H. Wozniakowski. Average case complexity of multivariate integration.Bulletin (New Series)
of the American Mathematical Society, 24(1):185–193, January 1991.

[66] Sidney J. Yakowitz.Computational Probability and Simulation. Addison-Wesley, New York,
N.Y., 1977.

[67] S. K. Zaremba. The mathematical basis of Monte Carlo and quasi-Monte Carlo methods.
SIAM Review, 10(3):303–314, July 1968.

9-26



From Solution to Image

Holly E. Rushmeier

updated from an article that appeared in the “Making Radiosity Practical” course
notes in SIGGRAPH 93

1 General Remarks

Global illumination methods are techniques for accurately calculating the transport of
radiation in an environment. In this course,we consider methods for calculating the transport
of visible light for the purpose of generating realistic images. The accuracy of the final
image depends not only on the specific method employed, but on the quality of the input
data, and on the methods used to transform the results of the calculation to an image on
a display device. In this section we will consider the problem of transforming global
illumination results into a displayable image. This problem requires some understanding
of a number of complex subject areas such as perception, colorimetry, etc. This section is
intended only as a brief introduction, with a just a few references to the extensive literature
available in these areas.

Global illumination methods take as input geometry and material properties of the
environment. From this, methods compute radiosities or radiances for discrete values of
location, direction and wavelength. For methods that don’t compute images pixel by pixel,
but in object space, continuous radiance distribution must be reconstructed from these
discrete values. This continous distribution is then resampled for generating an image on
a display device. Generally, the dynamic and spectral ranges of the radiosity results are
not in the range of the typical display devices we use. We need to use perceptually based
models to map results to the display device to obtain the best rendition of a scene. In this
section we discuss how to convert the discrete values from an illumination calculation into
an image.

The human visual system has been studied for centuries, and volumes of observations
and theories can be found. Understanding how a spectral distribution of radiant energy is
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converted into an idea in the human mind is a more complex problem that the light transport
problem. Some insight into the the relevant issues can be found in relatively accessible
form in references such as [1], [4], and [28].

In this section we present some very simplistic ideas on how principles of human
vision can be applied to image generation. We include these only to give a flavor of how
global illumination fits in to the overall image synthesis process. A much more careful
consideration of the ideas discussed here is needed for any application in which highly
accurate renderings of images are required.

We will consider three basic topics in vision – spatial variation, color, and brightness.

2 Spatial Variation

There are at least two problems that can be considered in this area – reconstructing continu-
ous spatial variations of radiance/radiosity solutions from discrete samples, and resampling
the distributions in image space.

2.1 Mach Banding

The simple way to reconstruct a point-sampled spatial radiosity solution is to bilinearly
interpolate between samples. This can give relatively small percentage errors in radiosity
or radiance at each location. However, simply reducing error in the reconstruction at each
point is not adequate. The human eye is very sensitive to changes in the spatial gradiant
of luminance, producing what are known as “Mach Bands.” Changes in gradient can
produce the perception of light or of dark bands, where no such bands exist in the radiance
distribution. A crude explanation of this phenomenon is that receptors in the eye do not
act independently. Receptor response depends not only on the incident illumination, but
the illumination on neighboring receptors. An interesting observation is that the bands
only occur where there are changes in luminance. If luminance doesn’t change, spectral
variations alone do not produce Mach bands.

In practice, most people probably reduce the mesh size after they see the Mach band
artifacts in their image. Often when images are recorded on film the gradients become
steeper, and the Mach bands become more noticeable. This makes the “fixing it after you
see it” approach even less practical.

An example of a non-ad hoc method for adjust meshing taking into account perceptual
effects is presented by Hedley et al. [9]. They discuss how to reduce the number of
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discontinuities which force mesh subdivisions by taking into account how the solution will
ultimately be mapped to the display device.

2.2 Anti Aliasing

Even global illumination calculations that are performed in object space ultimately have to
be sampled in image space to determine pixel values. The problem of sampling so that the
representation of the continuous image by discrete pixels does not produce visual artifacts
has been studied extensively in computer graphics for many years (e.g. [5]).

A unique aspect of the antialiasing problem when physically accurate global illu-
mination methods are used is that pixel sampling can be performed at two different steps
in the image generation process. One option is to sample each pixel and determine the
radiance, and then transform that radiance to monitor coordinates (i.e. 0 to 255 values for
RGB). A disadvantage of this method is that there will be a very high variance in the
radiance for pixels on the borders of light sources . As a result, if a stochastic sampling
method is used to find radiance pixel values, the result will be ragged edges on light sources
unless extremely high numbers of samples are used. An alternative is to transform all of
the radiances to RGB values first, and then sample for pixel values. This is much more
efficient, but sacrifices accuracy very slightly.

A study of filtering to attempt to avoid the ragged edges caused by the wide range of
sample values without clipping the values first is given in [18].

2.3 Other Consequences of Spatial Variations

Mach banding is just one effect demonstrating that perception is a function of the spatial
variation of luminance.

In a study of how to measure the similarity of real and synthetic images Rushmeier
et al. [20] found that useful metrics included a filtering by the human spatial contrast
sensitivity function. In that paper it was found to be more useful to compare images in the
spatial frequency domain, rather than pixel by pixel.

Recently Ferwerda et al. [7] presented a paper discussing the varying sensitivity of
the human visual system to spatial variations of luminance, and how that sensitivity varies
with the content of the image. This is an effect that could possibly be exploited to compute
images more efficiently without any degradation in the perceived image quality.
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3 Color

3.1 Metamers

In the physical world, there are an infinite number of possible continuous spectral distribu-
tions for radiance. On a typical display device only a finite number of distributions can be
displayed. Fortunately, the human eye can not distinguish between all possible spectral dis-
tributions. Many distributions appear to humans to have the same color. This phenomenon
is known as color metamerism. The basic solution to displaying spectral distributions is to
find an RGB triplet on the monitor you are using which is a metamer of the distribution
calculated by the illumination calculations.

The physical mechanism behind metamerism is that the color we see is the result
of the response of three types of receptors in the eye, each of which produce a signal
which is the result of integrating the incident spectral distribution with a filter. The three
receptors correspond to low, medium and high wavelength band filters. This suggests that
for the purposes of human perception, spectral distributions can be represented in terms
of three functions. This is the motivation behind the development of the CIE standard
color matching functions x(�), y(�) and z(�). (Note however that these functions are not
estimates of the receptor sensitivities.)

The y(�) function is essentially equal to the luminous efficiency function. Full sets
of values can be found in [29], [10], etc. Integrating the spectral distribution weighted by
the functions results in the X;Y;Z tristimulus values in the CIE colorimetric system. That
is:

X = k
Z
L(�)x(�)d�

Y = k
Z
L(�)y(�)d�

Z = k
Z
L(�)z(�)d�

where k is a constant.
IfL is expressed inW=m2str and k is chosen to be 1/680, Y is equal to the luminance

of the distribution in cd=m2. Chromaticity coordinates, (x; y), are defined by:

x = X=(X + Y + Z)

y = Y=(X + Y + Z)
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Using the functions x(�), y(�), and z(�) device independent XY Z values can be
computed for each spectral radiance distribution obtained from the illumination calculation.
Spectral distributions with the same tristimulus values appear to a human viewer to be the
same color. The use of this idea to to display images is described in detail in [14] and
[8]. For a particular monitor, the values of x and y can be measured or obtained from
the manufacturer for each of the phosphors, along with the values of Y for each phosphor
when it is set at a unit value. As an example of the magnitude of these quantities, for the
experiment described in [13], the chromaticities were found to be:

(xr; yr) = (:64; :33); (xg; yg) = (:29; :60); (xb; yb) = (:15; :06)

The ratios of luminances at the white point were found to be Y r : Y g : Y b =
.3142:1:.1009, and the total luminance of the white point was 82 cd=m2.

From this information X;Y; and Z for a unit value of each of the RGB primaries
can be found. Knowing these values, a transformation between RGB triplet and an XY Z
value can be calculated by a simple matrix multiplication:

[X;Y;Z]T = M [R;G;B]T ;M = [(Xr;Xg;Xb); (Yr; Yg; Yb); (Zr; Zg; Zb)]
T

For image synthesis, we want to determine RGB for a given XY Z . This can be computed
then using:

[R;G;B]T = M�1[X;Y;Z]T

Note that chromaticities and luminances vary for different classes of display device.
The same RGB values on a desktop CRT and on a typical laptop will look quite different.

The three by three matrix multiplication, in theory, allows the display of any calculated
radiance distribution on a monitor. However, undisplayable values may be obtained for
R;G or B. This may be cause the chromaticity (x; y) is outside of the displayable range
of the monitor. A discussion of this case is can be found in [8]. Another problem is that
the luminance of the calculated radiance distribution may be outside of the range of the
monitor. This problem is discussed in the following section on brightness.

3.2 Color Constancy

Unfortunately, even producing a completely accurate reconstruction of the spectral distrib-
ution and appropriately converting the distribution to XY Z and to RGB coordinates will
not always produce a satisfactory image. For example, if you render a room illuminated
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by a tungsten source the image will look oddly reddish. In one sense that is the correct
result. If you were outside under a sodium street light at night, looking into the room, it
would look reddish. However, if you are in the room and see only objects illuminated by
the tungsten light, the reddish cast is gone. White objects look white. This is an example
of “color constancy.” Our visual system adjusts so that objects appear to be essentially the
same color to us, even though the reflected spectral distribution from the object changes.
Nobody has introduced a a completely robust way to deal with color constancy. The most
common work around is to model light sources with a a flat white spectral distribution,
rather than with their true spectral distribution.

One promising approach for color constancy is to apply Land’s retinex theory [12].
These approaches have been developed in the image processing literature [11] for applica-
tion to physically acquired, rather than computer generated, imagery.

Besides the color constancy effect, some researchers question whether the CIE color
matching can be applied to match emitting and reflected light [21]. That is, it is not clear
that an XY Z triplet emitted from a spot on a CRT will appear the same as a spot in the
environment reflecting light with the same XY Z values.

3.3 Other Effects

It should also be noted that the perception of color is not independent of spatial variaions.
The difference in a human’s ablility to detect luminance variations versus color variations
was used in developing the original color television broadcast standards. Exploiting these
differences is also a topic of research in image synthesis.

4 Brightness

If the range of luminances in a scene were in the same range as those displayed by the
monitor, the XY Z=RGB calculations described in the previous section would be all that is
needed. However, real world luminances can vary from 10�6 to 104 cd=m2, while monitor
luminances are in the range 1 to 100 cd=m2. Some transformation is needed map real world
luminances to the monitor luminances.

The first logical mapping most people think of is a linear mapping, setting the
maximum real world luminance to the maximum monitor luminance. For example, if
a white light source is in the scene, its RGB values are set to 255, 255,255. Unfortunately,
because of the dynamic range of luminance in most common environments, the result of
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this mapping will be an image in which the source is a white bright spot, and everthing else
is black.

Several other alternative scaling factors are obvious, choosing the highest luminance
that is not from a light source to be the maximum monitor luminance, or choosing the
average luminance to be the average monitor luminance. All of these approaches have the
disturbing characteristic that they are independent of the absolute light level. The image will
look the same regardless of whether it is illuminated by fire flies or an aircraft searchlight.

One early approach, detailed in [24] is to try to solve the luminance mapping problem
in the same spirit as the color reproduction problem. Just as human beings are not sensitive
to precise spectral distributions of light, they are also not very good at judging the physical
magnitude of light reaching the eyes. Humans are more sensitive to luminance variations
than to absolute values. Just as we perceive colors rather than spectral distributions, we
perceive brightness, rather than absolute luminance. In an initial attempt at this approach,
only grey scale images are considered in [24].

For the color problem, the transformation toXY Z coordinates provided a mechanism
to find distributions displayable on the monitor that are percieved to be the same color as
the physical spectral distribution calculated by the radiosity method. We seek a similar
transformation from luminance to brightness that will allow the display of luminance dis-
tributions on the monitor that will be preceived by the observer to have the same brightness
as the physical scene. This type of transformation has been studied in photography, and is
referred to as the tone reproduction operator.

Many different models for the tone reproduction operator could be used. As an
example [24] describes the use of a model based on an experiment described in [23]. In the
work described in [23], brightness is measured of units of brils, where a bril is the sensation
of brightness from a fully dark adapted eye viewing a 5 degree target of 1 micro-lambert
for one second. In the experiments, the brightness in brils was measured as a function of
luminance for various adaptation levels of the eye. The result was a set of straight line
curves of brightness versus lumninance for various luminant adaptation levels. The curve
values can be expressed in the following equation:

B = 10�L�

� = 0:4log10(Lw) + 2:92; � = �0:4(log10(Lw))
2 + (�2:584log10(Lw)) + 2:0208

B is brightness in brils, L is luminance, and Lw is the luminance of the adaptation
level.
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Equating brightnesses for the observers of the monitor and the physical scene can
give a relationship between the luminance calculated by a radiosity solution Lrw and the
luminance to be displayed Ld.

Ld = L�rw=�d
rw 10(�rw��d)=�d]

To make a practical calculation, the luminances of the adaptation levels of the two observers
need to be approximated. [24] suggests letting the real world adaptation level Lw(rw) be:

log10(Lw(rw)) = E[log10(Lrw)] + 0:84

where E is the statistical mean over the image, and the monitor adaptation level be the
monitor peak luminance Ld;max. For typical monitors peak luminance is about 85 cd=m2.

Also, a relationship is needed between framebuffer value n (assuming 0 < n < 1)
which specfies RGB and the luminance output. Letting 
 be the correction for the non-
linear relationship between gun voltage and luminous output and Cmax be the maximum
contrast ratio between screen luminances (usually around 35 for CRT’s), the relationship
between n and Ld is:

n = [(Ld=Ld;max)� (1=Cmax)]
1=


The transformation from real world to display luminances, expressions for luminance
adaptation level and the relationship between frame buffer value and display luminance
gives a complete mapping from simulated real world luminances to image values.

The above treatment of brightness is only one possible method, and was developed
for gray scale images.

Another early approach, from the illumination engineering literature is discussed in
[21]. This approach converts RGB calculated from the XY Z values associated with each
point, into the gamut of the display device. The approach is based on a series of experiments
in which observers compared images and scale models of the environment imaged. It takes
into account the effect that regardless of their true spectrum, surfaces with relatively high
luminances tend to appear white. There are two steps in the method.

First consider an orthogonal coordinate system in which the axes areR;G andB. Let
�o be the angle between the values (Ro; Go; Bo) to be converted, and the line that passes
through (0,0,0) and (1,1,1).

RGB triplets are shifted towards white using the following:

�1 = �o(1 � (Y=�Ymax)
�)
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This shift transforms (Ro; Go; Bo) into (R1; G1; B1). The new values are then scaled
into the final display values using:

R2 = R1(Y=Ymax)
�; G2 = G1(Y=Ymax)

� ; B2 = B1(Y=Ymax)
�

The values of �, � and � were found by perceptual experiments to be 0.75, 5. and
0.75 respectively.

Niether of these two early methods is perfect, particularly if an image has a very
high dynamic range. A number of other methods for dealing with tone mapping have
been developed in the past few years. Ward [26] developed a simple linear operator for
preserving feature visibility. Chiu et al. [3] presented a non-uniform spatial scaling method
for mapping images with very high dynamic ranges. Schlick [19] developed an alternative
to this method with improved computational efficiency. The retinex methods that account
for color constancy [11] also map the wide dynamic range of luminances to the range of
the display device. Two of the most recent tone reproduction methods can be found in [27]
and [25].

5 Other Effects

There are other important vision effects besides those discussed here. Very bright areas in
real life produce glare. Simulating the effects of glare in images is discussed in [16] and
in [22]. Lower light levels result in changes in spatial acuity and color sensitivity. These
effects are discussed in [6] and are also incorporated in the model presented in [27].

The application of perceptual principles to realistic image synthesis is an active area
of research. Two papers related to this area are being presented at SIGGRAPH 98 ([17],
[2].)
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Further reading

An Introduction to Ray Tracing, Edited by Andrew Glassner, Academic Press, 1989. A
survey of ray tracing and the techniques needed to implement it. Surprisingly relevent for
such an old book!

Radiosity: A Programmer’s Perspective, Ian Ashdown, John Wiley & Sons, 1994. Goes
through a full and available C++ implementation of a radiosity program. Ashdown is a
professional engineer, and gets the details right.

Radiosity and Realistic Image Synthesis, Michael Cohen and John Wallace, Academic
Press, 1993. This is a technical overview of realistic rendering in general, and radiosity in
particular. It is a good place to start getting the researcher’s view of the field.

Radiosity and Global Illumination, François Sillion and Claude Puech, Morgan Kauf-
mann, 1994. Another technical overview of realistic rendering. More coverage of Monte
Carlo techniques than the Cohen and Wallace books.

Illumination and Color in Computer Generated Imagery, Roy Hall, Springer-Verlag,
1988. An overview of the practicalities of light, optics and perception from a graphics
viewpoint.

Light and Color in Nature and Art, Samuel Williamson and Herman Cummins, Wiley,
1983, A great all-around survey of light and color.

Thermal Radiation Heat Transfer, 3rd ed., Robert Siegel and John Howell, Hemisphere,
1992. Light transfer from the mechanical engineering perspective. These guys helped
invent what we call the radiosity method in graphics. A very good read after you are fairly
comfortable with the graphics side of the the problem.

The Illumination Engineering Society Lighting Handbook, Edited by Mark Rea, Illu-
mination Engineering Society, 1993. This is a reference book that describes what lighting
engineers need to know about light sources, optics, and perception. It is over $400, so get
it at the library.

Principles of Digital Image Synthesis, Andrew Glassner, Morgan Kaufmann, 1995 (2
vols). Everything about rendering and more from the advanced perspective. A good grad-
uate text for a full-year course. An errata sheet is available at:
http://www.research.microsoft.com/research/graphics/glassner/work/projects/pdis/errata.htm

Analytic Methods for Simulated Light Transport, Jim Arvo, Yale University, 1995. This
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is a dissertation with a very careful discussion of the mathematics and physics of light
transport. Although this document is extremely clear in its presentation, it is not for the
mathematically timid. It is available online at: http://www.cs.caltech.edu/˜arvo/.

Rendering with Radiance: The Art and Science of Lighting Visualization Greg Ward
Larson and Rob A. Shakespeare, with contributions from Peter Apian-Bennewitz, Charles
Ehrlich, John Mardaljevic, a nd Erich Phillips, Morgan Kaufmann, 1998 Radiance is a
UNIX software system for lighting design and rendering and it is freely available. This
book is a complete description of how to use the software, how it works, and how to apply
it to a variety of lighting design problems.

ONLINE RESOURCES

Websites come and go and change, but there are a couple “official” web sites that have been
around for a while that offer a great deal of useful material.

Ian Ashdown maintains a number of bibliographies related to global illumination at
http://www.ledalite.com/library-/rrt.htm
including a Radiosity Bibliograpy, a list of Radiosity and Global Illumination Theses, and
an Image-Based Rendering Bibliography.

Eric Haines publishes an electronic newsletter called “Ray Tracing News” that comes out
about twice a year. Issues since 1987 are available at
http://www.acm.org/tog/resources/RTNews/html/index.html

Eric Haines also maintains a page of pointers to software tools that includes pointers to
both ray tracing and radiosity packages at
htpp://www.acm.org/tog/Software.html
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